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In the previous lecture we arrived at the following theorem.

Let RR be a monad of expressions.

Let B(RR,RR) be the set whose elements are pairs (n, (T0, . . . , Tn−1))
where Ti is an expression with free variables from the set {x0, . . . , xi−1}.
Such a pair can also be written as

(T0, . . . , Tn−1) Ok

Let B̃(RR,RR) be the set of pairs (n, (T0, . . . , Tn, r)) where Ti is an
expression with free variables from the set {x0, . . . , xi−1} and r is an
expression with free variables from the set {x0, . . . , xn−1}. Such a pair
can also be written as

(T0, . . . , Tn−1 B r : Tn)
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Theorem 1 The mapping that we have constructed is a bijection
between the C-subsystems of the C-system CC(RR)[RR] and pairs

of subsets (B, B̃) in the sets B(RR,RR), B̃(RR,RR) that are

closed under the action of the B-system operations ft, ∂, T, T̃ , S, S̃, δ
that we have described.

This theorem generalizes to the case of a general module of expressions
LM over the monad of expressions RR. Such pairs can be described
by two sorted binding signatures where the sorts correspond to the type
expressions and element expressions.

We have considered the case when no distinction on the level of the
raw syntax is made between types and their elements - the case that is
somewhat orthogonal to the case of simple type theories where the type
expressions can not depend on variables and so can not contain element
expressions as subexpressions.
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Let me now remind a slide from the first lecture:

“In order to provide a mathematical representation (semantics) for a
type theory one constructs two C-systems.

• One C-system, that we will call the term C-system of a type theory,
is constructed from the formulas of type theory.

To explain how to do it in sufficient generality and at the same time
with mathematical rigor is the first and main goal of these lectures.

• The second C-system is constructed from the category of abstract
mathematical objects.

To explain how to do this construction is the second goal of the
lectures.”

In Theorem 1 and pertaining to it constructions we have accomplished
the first of these goals. Now we move to the second one.
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Definition 2 Let C be a category. A universe structure on a mor-
phism p : Ũ → U in C is a mapping that assigns to any morphism
f : X → U in C a pull-back square

(X ; f )
Q(f)−−→ Ũ

pX,f↓ ↓p

X
f−→ U

A universe in C is a morphism p together with a universe structure
on it.

In what follows we may write (X ; f1, . . . , fn) for (. . . ((X ; f1); f2) . . . ; fn).
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Definition 3 A universe category is a triple (C, p, pt) where C is a

category, p : Ũ → U is a morphism in C with a universe structure
on it and pt is a final object in C.

We will often denote a universe category by a pair (C, p).
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Let (C, p) be a universe category.

Define by induction on n pairs (Obn(C, p), intn) where

Obn = Obn(C, p)

are sets and
intn : Obn → Ob(C)

are functions, as follows:

1. Ob0 = unit where unit is our distinguished one element set with the
only element tt and int0(tt) = pt.

2. Obn+1 = qA∈ObnHomC(intn(A), U) and

intn+1(A,F ) = (intn(A);F ).

We will often write int instead of intn because n can usually be inferred.



8

Problem 4 For a universe category (C, p) to define a C0-system
CC(C, p).

Construction 5 We set

Ob(CC(C, p)) = qn≥0Obn(C, p)

where Obn = Obn(C, p) are the sets introduced above. Let

intOb : Ob(CC(C, p))→ C

be the sum of the functions intn. Let

Mor(CC(C, p)) = qΓ,Γ′∈Ob(CC(C,p))MorC(intOb(Γ), intOb(Γ
′))
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Define the function

intMor : Mor(CC(C, p))→Mor(C)

by the formula
intMor((Γ,Γ

′), a) = a

We will often write simply int for intOb and intMor.

The identity morphisms and the composition of morphisms are defined
as in C. The proofs of the axioms of a category are straightforward.

This completes the construction of a category CC(C, p).
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The length function is defined by l(n,A) = n.

Define for each n the function

ftn+1 : Obn+1 → Obn

by the formula ftn+1(A,F ) = A and define ft0 as the identity function
of Ob0. The function ft : Ob(CC)→ Ob(CC) is defined as the sum of
functions ftn.

For (n + 1, B) = (n + 1, (ft(B), F )) define

p(n+1,B) : int(B)→ int(ft(B))

as pint(ft(B)),F . For (0, tt) define p(0,tt) as Id(0,tt).
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For (m,A), (n + 1, B) = (n + 1, (ft(B), F )) and

f : (m,A)→ (n, ft(B))

define f ∗(n + 1, B) as

f ∗(n + 1, B) = (m + 1, (A, int(f ) ◦ F )) (1)

To define q(f, (n + 1, B)) recall that

int(n + 1, B)
Q(F )−−→ Ũ

pint(ft(B)),F↓ ↓p

int(n, ft(B))
F−→ U

is a pull-back square.
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We define

q(f, (n + 1, B)) : f ∗(n + 1, B)→ (n + 1, B)

by the condition that the diagram

int(A, int(f ) ◦ F )
int(q(f,(n+1,B)))−−−−−−−−−→ int(ft(B), F )

Q(F )−−→ Ũ
pA,int(f)◦F↓ ↓pft(B),F ↓p

int(A)
int(f)−−−→ int(ft(B))

F−→ U

commutes and int(q(f, (n + 1, B))) ◦Q(F ) = Q(int(f ) ◦ F ).

Define pt as the unique element (0, tt) of length zero.

For the proof of the fact that these data satisfies the C0-system axioms
see “C-system defined by a universe category”.
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Lemma 6 The pair of functions (intOb, intMor) is a fully faithful
functor

CC(C, p)→ C

Proof: Immediate from definitions.

Theorem 7 The C0-system CC(C, p) is a C-system.

Proof: By Proposition 3 of Lecture 1 it is sufficient to show that the
canonical squares of CC(C, p) are pull-back squares.



14

For (m,A),
(n + 1, B) = (n + 1, (ft(B), F ))

and f : (m,A)→ (n, ft(B)) we have the diagram

int(A, int(f ) ◦ F )
int(q(f,(n+1,B)))−−−−−−−−−→ int(ft(B), F )

Q(F )−−→ Ũ
pA,int(f)◦F↓ ↓pft(B),F ↓p

int(A)
int(f)−−−→ int(ft(B))

F−→ U

where the left hand side square is the int of the canonical square for f
and (n + 1, B).

The external square of this diagram is the square of the universe struc-
ture on p for int(f ) ◦ F and in particular it is a pull-back square.

The right hand side square is pull-back as the square of the universe
structure on p for F .
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We conclude, by the standard lemma, that the left hand side square is
pull-back.

Since int is fully faithful we conclude that the canonical square for f
and (n + 1, B) is a pull-back square in CC(C, p).

This completes the proof of the lemma.

The construction that we have just described is fundamental to the
theory of C-systems and to its use in the theory of type theories.

In particular, the C-system of the simplicial univalent model is obtained
using this construction.

An important feature of this construction is that it transforms equiva-
lences of universe categories into isomorphisms of C-systems.
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Definition 8 Let (C, p) and (C ′, p′) be universe categories. A func-

tor of universe categories from (C, p) to (C ′, p′) is a triple (Φ, φ, φ̃)

where Φ : C → C ′ is a functor and φ : Φ(U) → U ′, φ̃ : Φ(Ũ) → Ũ ′

are morphisms such that:

1. Φ takes the canonical pull-back squares based on p to pull-back
squares,

2. Φ takes pt to a final object of C ′,
3. the square

Φ(Ũ)
φ̃−→ Ũ ′

Φ(p)↓ ↓p′

Φ(U)
φ−→ U ′

is a pull-back square.



17

Problem 9 Let

(Φ, φ, φ̃) : (C, p, pt)→ (C ′, p′, pt′)

be a functor of universes categories. To define a homomorphism
H = H(Φ, φ, φ̃) from CC(C, p) to CC(C ′, p′).

Construction 10 See “A C-system defined by a universe category”.

Construction 10 most likely extends to a functor from a naturally defined
2-category of universe categories to the 1-category of C-systems.
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Lemma 11 Let (Φ, φ, φ̃) be as in Problem 9 and let H be the solu-
tion given by Construction 10. Then one has:

1. If Φ is a faithful functor and φ is a monomorphism then H is
an injection of C-systems.

2. If Φ is a fully faithful functor and φ is an isomorphism then H
is an isomorphism.

Proof: See “A C-system defined by a universe category”.

An important case of Lemma 11(2) is the identity functor Φ and identity

morphisms φ and φ̃ as a universe category functor between universe
categories (C, p) and (C, p)′ with the same C and p but different choices
of pull-back squares and final objects.
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Our next result shows that any C-system is isomorphic to a C-system
of the form CC(C, p).

Problem 12 Let CC be a C-system. Construct a universe category
(C, p) and an isomorphism CC ∼= CC(C, p).

For three different constructions to this problem see “A C-system defined
by a universe category”.
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One can also use our main construction to provide, in a fully constructive
fashion and without any use of the axiom of choice, for any category
C, with a given final object and fiber products, a C-system and an
equivalence between the underlying category of this C-system and C.
More precisely one has:

Problem 13 Let C be a precategory with a given final object pt and
fiber products. To construct a C-system CC and an equivalence of
categories J∗ : CC → C, J∗ : C → CC.

Construction 14 See “A C-system defined by a universe category”.
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Finally let me show that universe categories can be considered as cate-
gories with families with a special additional structure.

First we need to give a definition of a category with families that uses
familiar mathematical components. Such a definition was first devised,
to the best of our knowledge, by Marcelo Fiore and explicitly appeared
in his talk at ICALP 2012. We continue to call the object so defined
“a category with families” because the definition is equivalent in a very
strict sense to the original definition of Peter Dybjer.

For an object X of C and a presheaf F on C we let v(X) denote the
usual bijection

v(X) : F (X)→MorPreShv(C)(Y o(X), F )

where Y o is the Yoneda embedding. We often abbreviate v(X) to v.



22

Definition 15 A category with families is a collection of data of
the following form:

1. A category C,

2. Two presheaves Tm and Ty on C and a morphism π : Tm→ Ty,

3. For any object X ∈ C and an element A ∈ Ty(X) a collection
of data of the form:

(a) an object X.A of C,

(b) an element Q(X,A) of Tm(X.A),

(c) a morphism pX,A : X.A→ X,
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These data should satisfy the following condition: for any object
X ∈ C and an element A ∈ Ty(X) the square in PreShv(C)

Y o(X.A)
v(Q(X,A))−−−−−→ Tm

Y o(pX,A)↓ ↓π

Y o(X)
v(A)−−→ Ty

is a pull-back square.
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So defined, categories with families are also closely related to the natural
models of Steve Awodey (Awodey, 2014). The major difference is that in
his definition Awodey requires the existence of the comprehension struc-
ture, i.e., of X.A, pX,A and Q(X,A) satisfying the pull-back condition,
while in a category with families we are given a particular choice of this
structure.

This difference is substantial since different choices of the comprehension
structure lead to non-isomorphic categories with families.
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One can show that

Universe categories are almost the same as categories with families
equipped with representations of the presheaves Ty and Tm.

“Almost the same” here means that one can construct an equivalence
of the corresponding 1-categories. That is, when we go back and forth
along the functors in opposite directions we obtain objects that are not
only equivalent but isomorphic to each other.

The construction of a C-system from a universe category extends easily
to a construction of a C-system from a category with families.

Given a category with families (C, π, c) where c = (X.A, pX,A, Q(X,A))
is a comprehension structure one constructs a C-system CC(C, π, c)
together with a fully faithful functor CC(C, π, c)→ C.
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In the opposite direction, any C-system CC defines a category with
families (C, π, c)(CC) with the same underlying category as CC.

These two constructions are mutually inverse for categories with families
for which the functor CC(C, π, c)→ C is a bijection on objects.

This allows one to consider C-systems as categories with families having
a particular property. However this property transports only along
isomorphisms of categories with families but not along their equiv-
alences.
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Another property of a category with families that is likely to be trans-
portable along isomorphisms but not along equivalences is the property
of being a free object generated by some system of operations corre-
sponding to the inference rules of type theories.

This is the main reason why I consider the theory C-systems, which
appear to be more difficult to work with than categories with families,
to be an absolutely necessary part of the general theory of syntax and
semantics of type theories.


