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In the previous lecture we described two methods of constructing new
C-systems from the existing ones.

In one method one starts with a C-system CC and a presheaf of sets F
on the category underlying CC and constructs a new C-system CC[F ]
that is called the F -extension of CC.

In another method one starts with a C-system CC and describes its
B-sets (B(CC), B̃(CC)) and the action of the B-system operations

pt, ft, ∂, T, T̃ , S, S̃, δ

on these sets. Then one uses a bijection between the pairs of subsets

B′ ⊂ B(CC) B̃′ ⊂ B̃(CC)

that are closed under these operations and C-subsystems CC ′ of CC.
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Our goal in this lecture is to obtain the term C-systems of type theories
with two kinds of judgements

Γ BOk

Γ B o : T

as particular cases of our general constructions. As an application we
will obtain the list of necessary and sufficient conditions that the sets of
valid judgements of these two kinds have to satisfy in order for them to
correspond to a type theory that has a term C-system.
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We start with reminding the construction of a Lawvere theory from a
monad RR on Sets(U).

This construction can be factored into the composition of two con-
struction - a very elementary “forgetting” construction from monads on
Sets(U) to relative monads on the functor Jf : F → Sets(U) followed
by a construction of a Lawvere theory from a Jf -relative monad.

However, since we will not need the equivalence of categories result es-
tablished in “Lawvere theories and Jf-relative monads” we may proceed
directly from monads to Lawvere theories.
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Let RR = (R, η, µ) be a monad on Sets(U). Let F (RR) be the
category whose set of objects is N and morphisms are given by

Mor(F (RR)) = qm,n∈NFun(stn(m), R(stn(n)))

Note that here again we can not use ∪ instead ofq because the codomain
function on the union will not be defined if R(stn(n)) = R(stn(n′)) for
some n 6= n′. The identity morphisms are given by

Idn = ((n, n), η(n))

and the composition by

((k,m), f ) ◦ ((m,n), g) = ((k, n), f ◦ (R(g) ◦ µ(stn(n))))

The verification of the associativity and unity axioms is straightforward.
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Lemma 1 Let

LRR,Ob : Ob(F )→ Ob(F (RR))

be the identity function and let

LRR,Mor : Mor(F )→Mor(F (RR))

be the function given by

LRR,Mor(f ) = ((dom(f ), codom(f )), f ◦ η(n)).

Then LRR = (LRR,Ob, LRR,Mor) is a functor that defines a Lawvere
theory structure on F (RR).

For a detailed proof in the somewhat more general case of a relative
monad see “Lawvere theories and Jf-relative monads”.
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Let us denote the C-system LC(F (RR), L) by CC(RR) so that in
particular, as a category

CC(RR) = (F (RR))op.

We want to describe the B-sets and the B-system operations for the
C-systems of the form CC(RR)[LM]. Here, the notation LM for
presheaves on CC(RR) comes from the fact that such presheaves are
precisely the left modules over the Jf-relative monad defined by RR.

Unfortunately, in the ZF, the description that we will give and that we
will use to establish the connection with the real world type theories
does not extend to the more general case of C-systems LC(T, L)[LM].
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The problem is due to the impossibility of constructing a Lawvere theory
with

Mor(L(1), L(m)) = R(stn(m))

because the sets on the left hand side must be distinct for m 6= m′

while the sets on the right hand side may coincide for different m. This
problem does not arise in the Univalent foundations and there one can
make the computation a little more general.
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Among the presheaves that we will consider will be the presheaf given
by the formulas:

RROb(n) = R(stn(n))

and
RRMor((m,n), f ) = R(f ) ◦ µ(n)

It is easy to construct an isomorphism (RROb, RRMor) → Y o(L(1))
where Y o(L(1)) is the presheaf represented by L(1) = 1. However this
isomorphism is not an identity due to the fact that

Y o(L(1))(L(n)) = MorCC(R)(L(n), L(1)) =

{((1, n), f ) | f ∈ Fun(stn(1), R(stn(n)))}
and this set is not equal to the set RR(n) = R(stn(n)).
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Let
B(RR,LM) =

∐
n∈N

LM(0)× . . .× LM(n− 1)

and
B̃(RR,LM) =

∐
n∈N

LM(0)× . . .× LM(n)×RR(n)

Then, by construction,

B(CC(RR)[LM]) = B(RR,LM)

In the next few slides we will construct a bijection

mbRR,LM : B̃(CC(RR)[LM])→ B̃(RR,LM)
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Then we will compute the operations on (B(RR,LM), B̃(RR,LM))
obtained by transport of the B-system operations for CC(RR)[LM]
through the pair of bijections (Id,mbRR,LM).

Pairs of subsets invariant under these operations in

(B(RR,LM), B̃(RR,LM))

will correspond to C-subsystems of CC(RR)[LM] through the com-

position of two bijections - the bijection (B′, B̃′) 7→ (B′,mb−1(B̃′))
followed by the bijection of the C-subsystems theorem.
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Recall, that by the definition of a Lawvere theory the square

L(n + 1)
L(ii

n,1
1 )

−−−−→ L(1)

L(ii
n,1
0 )↓ ↓
L(n) −→ L(0)

is a pull-back square in CC(RR) = (F (RR))op.

Therefore, by a general lemma about pull-back squares and taking into
account that L(0) is a final object we see that the mapping

s 7→ s ◦ L(iin,11 )

is a bijection from the sections of L(iin,10 ) to morphisms L(n) → L(1).
Since the morphism L(iin,10 ) is, by construction, pL(n+1) we obtain a
bijection from sections of pL(n+1) to MorCC(RR)(L(n), L(1)). Let us
denote this bijection b1.
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Next we have

MorCC(RR)(L(n), L(1)) = {((1, n), f ) | f ∈ Fun(stn(1), R(stn(n)))} =

{((1, n), f ) | f ∈ Fun(stn(1), RR(n))}
Let

b2 : MorCC(RR)(L(n), L(1))→ RR(n)

be “the obvious bijection”, i.e., the bijection given in the forward direc-
tion by

b2((1, n), f ) = f (0)

Then ss 7→ b2(b1(ss)) gives us a bijection from the subset ofMor(CC(RR))
that consists of sections of pn+1 to RR(n).
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From the definitions one computes that elements of B̃(CC(RR)[LM])
are iterated pairs of the form

(((n, ft(Γ)), (n + 1,Γ)), ss)

where Γ ∈ LM(0)× . . .×LM(n) and ss is a section of pn+1. We define
mbRR,LM as the function

mbRR,LM : B̃(CC(RR)[LM])→ B̃(RR,LM)

given by the formula

mbRR,LM(((n, ft(Γ)), (n + 1,Γ)), ss) = (n, (Γ, b2(b1(ss))))

Knowing that b1 and b2 are bijections one proves easily that mbRR,LM

is a bijection.
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Let me remind that we have

B(RR,LM) =
∐
n∈N

LM(0)× . . .× LM(n− 1)

B̃(RR,LM) =
∐
n∈N

LM(0)× . . .× LM(n)×RR(n)

Let us describe the operations ft, ∂, T, T̃ , S, S̃, δ on these two sets. I
will not provide the actual computation that can be found in “C-system
of a module over a Jf-relative monad” but will only describe the answer.

For ft and ∂ we have

ft(n, (T0, . . . , Tn−2, Tn−1)) = (max(n− 1, 0), (T0, . . . , Tn−2))

and
∂(n, (T0, . . . , Tn, r)) = (n + 1, (T0, . . . , Tn))
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For E ∈ LM(m) and f : m → n in F we write f (E) instead of
LMMor(L(f ))(E).

This agreement applies in particular to the presheaf RR so that for r ∈
RR(m) and f : m→ n in F we write f (r) instead of RRMor(L(f ))(r)

For n ∈ N and i = 0, . . . , n − 1, let xni ∈ RR(n) = R(stn(n)) be the
element given by xni = η(n)(i). When n is clear from the context we
will write xi instead of xni .

We will need two series of morphisms in F .

For m, i ∈ N,
ιim : stn(m)→ stn(m + i)

of the form (funx⇒x) and for m ∈ N and 0 ≤ i ≤ m

∂im : stn(m)→ stn(m + 1)

which is the increasing inclusion that does not take the value i.
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The last ingredient that we need are operations θLMm,n of the form

θLMm,n : RR(m)× LM(n)→ LM(n− 1)

defined for all n,m ∈ N such that n > m.

To define these operations we will use the representation of morphisms
in CC(RR) in the form of sequences (r0, . . . , rm−1) where ri ∈ RR(n).
Such a sequence defines an element in Fun(stn(m), RR(n)) and there-
fore a morphism n→ m in CC(RR).

For example, the sequence (xn0 , . . . , x
n
n−1) represents the morphism

((n, n), η(n))

i.e., the identity morphism of n.
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The operation

θLMm,n : RR(m)× LM(n)→ LM(n− 1)

is given by the formula:

θLMm,n(r, E) = LMMor(x0, . . . , xm−1, ι
n−m−1
m (r), xm, . . . , xn−2)(E)

The sequence

(x0, . . . , xm−1, ι
n−m−1
m (r), xm, . . . , xn−2)

has n terms that belong to RR(n − 1) and so represents an element
in MorCC(RR)(n − 1, n). We apply to it LMMor obtaining a function
LM(n)→ LM(n− 1) and act by it on E.

We will usually write θ instead of θLMm,n because the arguments LM , m
and n can be inferred from the remaining two arguments.
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We are now ready to describe the action of the operations T, T̃ , S, S̃ on
the sets B = B(RR,LM), B̃ = B̃(RR,LM)
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Theorem 2 Operation T is defined on the set of pairs (m,Γ), (n,Γ′)
in B where Γ = (T0, . . . , Tm−2, T ), Γ′ = (T0, . . . , Tn−1) with n > m−1
and m > 0. It takes values in B and is given by

T ((m,Γ), (n,Γ′)) =

(n + 1, (T0, . . . , Tm−2, T, ∂
m−1
m−1(Tm−1), . . . , ∂m−1

n−1 (Tn−1)))

Operation T̃ is defined on the set of pairs (m,Γ) ∈ B, (n, (Γ′, s)) ∈ B̃
where Γ = (T0, . . . , Tm−2, T ), Γ′ = (T0, . . . , Tn−1) with n+ 1 > m− 1

and m > 0. It takes values in B̃ and is given by

T̃ ((m,Γ), (n, (Γ′, s))) = (n + 1, (T ((m,Γ), (n,Γ′)), ∂m−1
n (s)))
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Operation S is defined on the set of pairs (m, (Γ, r)) ∈ B̃, (n,Γ′) ∈ B
where Γ = (T0, . . . , Tm), Γ′ = (T0, . . . , Tn−1) such that n− 1 > m. It
takes values in B and is given by

S((m, (Γ, r)), (n,Γ′)) =

(n− 1, (T0, . . . , Tm−1, θ(r, Tm+1), θ(r, Tm+2), . . . , θ(r, Tn−1)))

Operation S̃ is defined on the set of pairs (m, (Γ, r)), (n, (Γ′, s)) ∈ B̃
where Γ = (T0, . . . , Tm), Γ′ = (T0, . . . , Tn) such that n > m. It takes

values in B̃ and is given by

S̃((m, (Γ, r)), (n, (Γ′, s))) = (n− 1, (S((m, (Γ, r)), (n+ 1,Γ′))), θ(r, s))
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Operation δ is defined on the subset of (m,Γ) in B such that m > 0.

It takes values in B̃ and is given by

δ(m,Γ) = (m, (T ((m,Γ), (m,Γ)), xm−1))
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Let us consider now the following special case. Define a binding arity
as a sequence (n1, . . . , nd) of natural numbers. Let BAr be the set of
binding arities. Define a binding signature as a pair Σ = (Op,Ar) where
Op is a set whose elements are called operations and Ar : Op → BAr
is a function.

For any binding signature Σ and any universe U one can construct a
monad RRΣ on Sets(U). The value of the object part of this monad
on a set X is the set of “α-equivalence classes of expressions under Σ
with free variables from X”. The functor and the monad structures on
RRΣ is given by “capture free substitution”.

There is very interesting and non-trivial theory of such monads with the
main references being the foundational 1999 paper by Fiore, Plotkin and
Turi and the 2007 and 2010 papers by Hirschowitz and Maggesi.
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I will illustrate these concepts on examples since we have no time to go
into the mathematical construction of RRΣ.

The first group of examples arises when all the arities are of the form
(0, . . . , 0). Such arities are called algebraic. Then Σ can be viewed
as the usual algebraic signature where the arity of an operation is the
number of 0’s in its binding arity. Given such a Σ and a set X one
defines the set of expressions under Σ with variables from X in a usual
way. For example one can define RRΣ(X) as the free structure on the
set of generators X with the set of operations Op where P ∈ Op is an
operation with d variables where d is the number of 0’s in Ar(P ).

The monad in this case is the well-known monad of free algebraic struc-
tures under a given signature.
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The second group of examples is obtained from the single sorted pred-
icate logic theory without function symbols. Then one has quantifiers
∀ and ∃, operations ∨, ∧, ¬ and ⇒ and a set Pr of predicates with a
function A : Pr → N giving the number of arguments for a predicate
(this needs to be encoded in the ZF but we will ignore this step of the
construction).

Formulas in this theory with variables in all free occurrences being from
a set X and considered up to the equivalence relation generated by
renaming of bound variables form a set RRΣ(X) and using properly
defined substitution one can make these sets into a monad. The binding
signature in this case is given by Op = {∀,∃,∨,∧,¬,⇒}∪Pr with the
arities being

Ar(∀) = (1) Ar(∃) = (1)

Ar(∨) = (0, 0) Ar(∧) = (0, 0) Ar(¬) = (0) Ar(⇒) = (0, 0)

for P ∈ Pr, Ar(P ) = (0, . . . , 0) where the number of 0’s is A(P )
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The binding signature of the Martin-Lof type theory MLTT78 described
in the paper “Constructive mathematics and computer programming”
contains 3 operations with the signature (1, 0), one operation with sig-
nature (1), one operation with signature (0, 2), one with (0, 1, 1), one
with (0, 0, 2), one with (0, 3) and many, including some infinite series,
algebraic operations. See p. 158 of the “Constructive mathematics”
paper.
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For such monads, since the monad structure is given by actual substi-
tution, our abstract formulas specialize into a much more familiar form.
Here is how operations T and S look like in the case RR = RRΣ and
LM = RR.

First we need to express ιim, ∂im and θm,n in terms of substitutions. We
consider RR(m) = RΣ(stn(m)), i.e., expressions with free variables
being natural numbers 0, . . . ,m − 1. This is a little inconvenient for
presentation and we will write xi instead of i. Then

xni = xi ∈ RR(n)

ιin(E) = E, the same expression considered as an element of RR(n + i).

∂in(E) = E[xi+1/xi, xi+2/xi+1, . . . , xn/xn−1]

θi,n(r, E) = E[r/xi, xi/xi+1, . . . , xn−2/xn−1]
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Elements of B(RR,RR) are pairs (n, (T0, . . . , Tn−1)) where Ti is an
expression in variables x0, . . . , xi−1. They can be written as

(T0, . . . , Tn−1)Ok

Elements of B̃(RR,RR) are pairs (n, (T0, . . . , Tn, r)) where Ti is an
expression in variables x0, . . . , xi−1 and r is an expression in variables
(x0, . . . , xn−1). They can be written as

(T0, . . . , Tn−1 B r : Tn)

The actions of T and T̃ produce an insertion of one additional T-
expression with the shift of numbers of variables in the following ex-
pressions. This is known in the type theory as weakening.
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The actions of S and S̃ produce the removal of one T-expression followed
by the replacement of one of the variables in the following expressions
by the r-argument of the operation and a shift of numbers of variables.
This is known in type theory as the substitution operation.

The action of δ takes (T0, . . . , Tn)Ok to (T0, . . . , Tn B xn : Tn).

We conclude that any pair of sets of sequences of the form (T0, . . . , Tn−1)
and (T0, . . . , TnBr : Tn) that is closed under truncation (this is the ft),
removal of r (this is ∂), weakening, substitution and contains elements
of the form (T0, . . . , Tn B xn : Tn) defines a C-system.

When these subsets are the subsets of valid judgements of a type theory
the C-system that one obtains is called the term C-system of the type
theory.


