Problem assignment 1.

Meromorphic Continuation of Eisenstein Series.

Joseph Bernstein
July 8, 2007.
I would like to discuss the notion of Frechet representation, as discussed in lectures (Casselman uses the term "Frechet representations of moderate growth").

Bellow I will consider the group $G=S L(2, \mathbf{R})$. For $g \in G$ I define $\|g\|=$ $\max \left(\|g\|_{M},\left\|g^{-1}\right\|_{M}\right)$, where $\|g\|_{M}$ is just the usual norm on the space of matrices.

1. Let $C(G)$ be the space of continuous functions on G. Show that this is a Frechet space in a natural topology, that the natural representation $\Pi, G, C(G)$ is continuous, but it is not a Frechet representation.
2. Prove the following

Lemma. Let A be a $*$-algebra and $\pi: A \rightarrow O p(H)$ its $*$-representation in a Hilbert space H. Suppose we know that the subalgebra $B \subset O p(H)$ contains many compact operators (which means that they do not have common kernel in H).

Show that the representation Π is isomorphic to a sum of irreducible representations $\Pi=\oplus \pi_{\kappa}$, and each irreducible representation appears in this decomposition with finite multiplicity.
3. Let M be a (\mathfrak{g}, K)-module. Suppose we know that for any K-type σ the space M^{σ} is finite dimensional.

Show that the following conditions are equivalent
(i) M is finitely generated
(ii) M is $\mathcal{Z}(G)$ finite
(iii) M has finite length.
(here $\mathcal{Z}(G)$ is the center of the Universal enveloping algebra $U(\mathfrak{g})$)
Such modules aree called Harish Chandra modules.
4. Using Casselman-Wallach theorem prove the following

Statemant. Let (π, G, V) be an asf representation (i.e. an admissible smooth Frechet representation). Then for any Frechet representation ((R, G, E) we have

$$
\operatorname{Hom}_{G}(V, E)=\operatorname{Hom}_{G}\left(V, E^{\infty}\right)=\operatorname{Hom}_{\mathcal{H}^{f}}\left(V^{f}, E^{\infty f}\right)==\operatorname{Hom}_{(\mathfrak{g}, K)}\left(V^{f}, E^{\infty f}\right)
$$

5. Prove Frobenius reciprocity.

Statement. Let (π, G, V) be an asf representation, $X=\Gamma \backslash G$ an automorphic space. Show that

$$
\operatorname{Hom}_{G}(V, F(X))=\operatorname{Hom}_{G}\left(V, C^{\infty}(X)\right)=\operatorname{Hom}_{\Gamma}(V, \mathbf{C})
$$

6. Let (π, G, V) be an asf representation. Define the notion of a contragradient asf representation $\tilde{V} \subset V^{*}$ and of hermitian dual asf representation $V^{+}=\tilde{\tilde{V}}$.

Show that for any Banach representation $(R, G, \underset{\tilde{V}}{E}$) and a G-moprphism ν : $V \rightarrow E$ the adjoint morphism ν^{*} maps $\left(E^{*}\right)^{\infty}$ into \tilde{V}.

Show that morphisms $\alpha: V \rightarrow C^{\infty}(X)$ correspond to morphisms β : $C_{c}^{\infty}(X) \rightarrow V^{+}$.

