Problem assignment 2.

Meromorphic Continuation of Eisenstein Series.

Joseph Bernstein

July 15, 2007.

1. Let (π, G, V) be a Frechet representation.

Show that the subspace V^{∞} of smooth vectors is dense in V.

Show that if π is admissible then the space V^f of K-finite vectors lies in V^{∞} and is a (\mathfrak{g}, K) -module.

2. (i) Show that the function $e^{-x^2} \cdot \exp(i \exp(x^8))$ belongs to $L^2(\mathbf{R})$ but does not lie in the Schwartz space on \mathbf{R} .

(ii) Consider on the upper half plane H the function $f = \exp(ix)$.

Show that it lies in $L^2(\mathfrak{S}_T)$ but is not a smooth vector in this space.

(iii) Consider on the upper half plane the function $\phi = y^2 \exp(ix)$ and define the function f on the automorphic space $X = \Gamma \backslash G$ via $f = \sum_{\gamma \in \Gamma_U \backslash \Gamma} \gamma(\phi)$.

Show that this series converges and gives a function f in the space $L^{-2}(X)$ (Hint. It is bounded by a convergent Eisenstein series).

Show that this function f is not a smooth vector in $F^{mod}(X)$.

3. Work out the proof of geometric lemma for $SL(2, \mathbb{Z})$, namely that $C \cdot E = 1 + D$, where D skew commutes with the action of M, i.e. $\rho(m)D = D\rho(m^{-1})$.

4. Prove basic properties of holomorphic families of morphisms.

(i) Suppose $\nu(s) : F \to W$ and $\lambda(s) : W \to V$ are holomorphic families. Then the family $\mu(s) = \lambda(s) \cdot \nu(s) : F \to V$ is also a holomorphic family of morphisms.

(ii) Let $\nu(s) : F \to W$ be a holomorphic family of morphisms of Banach spaces. Show that it is continuous and moreover for every point $a \in S$ we can expand near $a \nu(s) = \sum_{\alpha} B_{\alpha}(s-a)^{\alpha}$, where $||B_{\alpha}|| \leq Cr^{|\alpha|}$ for some r.

5. Let Ξ_s be a holomorphic system of linear equations in a finite-dimensional vector space L. For every $s \in S$ consider the number $k_s = \dim(Sol(\Xi_s))$ (it can be $-\infty, 0, 1, ...$).

Show that the function $s \mapsto k_s$ is constant almost everywhere and equals some number k.

Show that if $k \ge 0$ we can add to the system Ξk additional equations, independent of s, such that the resulting system of equations Ξ' almost everywhere has unique solution v(s) and this solution is a meromorphic function in s.

6. Let $\nu(s): F \to W$ be a holomorphic family of morphisms of Hilbertian spaces. Suppose we know that at a point $a \in S$ the operator $\nu(a)$ has left inverse modulo compact operators (this means that there exists an operator $I: W \to F$ such that $I \cdot \nu(a) = 1 + C$, where C is a compact operator).

Show that the system of equations $\Xi_s : \nu(s)(v) = 0$ is of finite type near the point a.

7. Let $G = SL(2, \mathbf{R}), \Gamma = SL(2, \mathbf{Z}), X = \Gamma \backslash G$ the automorphic space.

Construct a weight function w on X such that on a Siegel domain \mathfrak{S}_T it will be comparable to function y (imaginary coordinate on the upper half plane

which we consider as a function on $U \setminus G$ and hence a function on Z_B . We consider the basic spaces $L_k = L^2(X, w^{2k}\mu)$. By definition $F^{mod}(X) = \bigcup L_k$ is the space of functions of moderate growth on X and $F^{rd}(X) = \bigcap L_k$ is the space of rapidly decreasing functions on X.

Show that if T is small, then the natural morphism $i: L_k(X) \to L_k(\mathfrak{S}_T)$ is a closed imbedding with controllable norms (this means that $c||v|| \leq ||i(v)|| \leq$ C||v|| for all vectors $v \in L_k(X)$).