GEOMETRY OVER THE FIELD WITH ONE ELEMENT

OLIVER LORSCHEID

1. MOTIVATION

Two main sources have led to the development of several notioAg-géometry in the
recent five years. We will concentrate on one of these, which originated as remark in a
paper by Jacques Tits ([10]). For a wide class of schemémcluding affine spaca™,
projective spac®”, the Grassmannia@r(k, n), split reductive groups?), the function

N(q) = #X(Fg)

is described by a polynomial i with integer coefficients, wheneveris a prime power.
Taking the valueN (1) sometimes gives interesting outcomes, but h@isod orderr in

other cases. A more interesting number is the lowest non-vanishing coefficient of the
development ofV(¢) aroundg — 1, i.e. the number

N(q)
m ,
g—1 (g —1)"
which Tits took to be the numbef X (F,) of “F;-points” of X. The task at hand is to
extend the definition of the above mentioned scheMés schemes that are “defined over

F,” such that their set oF-points is a set of cardinalityt X (F,). We describe some
cases, and suggest an interpretation of the s&t gfoints:
o #P"L(Fy) = n = #M, with M,, := {1,...,n}.
o #Gr(k,n)(F1) = (}) = #Mj,n With M, ,, = {subsets of\,, with & element3.
e If G is a split reductive group of rank, ' ~ G], C G is a maximal torus,
N its nomalizer andV = N(Z)/T(Z), then the Bruhat decompositi@i(F,) =
[.,cw BwB(F,) (whereB is a Borel subgroup containirig) implies thatV (¢) =
> wew (@ — 1)"gd for certaind,, > 0. This means tha#-G (F,) = #W.

In particular, it is natural to ask whether the group law G x G — G of a split reductive
group may be defined as a “morphism o¥gf. If so, one can define “group actions over
F.". The limit asq — 1 of the action

GL(n, F,) x Gr(k,n)(F,) — Gr(k,n)(F,)

induced by the action of”~!(FF,) should be the action
Sn X Mk,n E— Mk,n

induced by the action o/, = {1,...,n}.

The other, more lofty motivation fdF;-geometry stems from the search for a proof of
the Riemann hypothesis. In the early 90s, Deninger gave criteria for a category of motives
that would provide a geometric framework for translating Weil's proof of the Riemann
hypothesis for global fields of positive characteristic to number fields. In particular, the
Riemann zeta functiot(s) should have a cohomological interpretation, whergdn an
H' and anH?2-term are involved. Manin proposed in [7] to interpret tHé-term as the
zeta function of the “absolute poinpec F; and theH2-term as the zeta function of the
“absolute Tate motive” or the “affine line ovey”.
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2. OVERVIEW OVER RECENT APPROACHES

We give a rough description of the several approaches tovigrdeometry, some of them
looking for weaker structures than rings, e.g. monoids, others looking for a category of
schemes with certain additional structures. In the followingyanoid always means a
abelian mutliplicative semi-group with. A varietyis a schemeX that defines, via base
extension, a varietyX;, over any fieldk.

2.1. Soule, 2004 [9]). This is the first paper that suggests a candidate of a category of
varieties overF;. SouE consideres schemes together with a complex algebra, a func-
tor on finite rings that are flat ovet and certain natural transformations and a universal
property that connects the scheme, the functor and the algebraé &mutl prove that
smooth toric varieties provide natural example& ofvarieties. In [6] the list of examples

was broadened to contain models of all toric varieties dyeras well as split reductive
groups. However, it seems unlikely that Grassmannians that are not projective spaces can
be defined in this framework.

2.2. Connes-Consani, 2008[{]). The approach of So@lwas modified by Connes and
Consani in the following way. They consider the category of scshemes together with a
functor on finite abelian groups, a complex variety, certain natural transformations and a
universal property analogous to Seslidea. This category behaves only slightly different

in some subtle details, but the class of established examples is the same (cf. [6]).

2.3. Deitmar, 2005 (3]). A completely different approach was taken by Deitmar who
uses the theory of prime ideals of monoids to define spectra of monoifls-s&heme is a
topological space together with a sheaf of monoids that is locally isomorphic the spectrum
of a ring. This theory has the advantage of having a very geometric flavour and one can
mimic algebraic geometry to a large extent. However, Deitmar has shown himself in a
subsequent paper that the-schemes whose base extensiofi.tare varieties are nothing
more than toric varieties.

2.4. Toen-Vaquig, 2008 [11]). Deitmar's approach is complemented by the work G#fo
and Vaqué, which proposes locally representable functors on monoids, @#shemes.
Marty shows in [8] that the Noetheridh -schemes in Deitmar’s sense correspond to the
Noetherian objects in Bn-Vaqué’s sense. We raise the question: is the Noetherian con-
dition necessary?

2.5. Borger, in progress. The category investigated by Borger are schetkiemgether
with a family of morphism{v,, : X — X}, prime, Where theyp,,’s are lifts of the Frobenius
morphismgrob, : X ® F, — X ® IF,, and ally,'s commute with each other.

There are further approaches by Durov ([4], 2007) and Haran ([5], 2007), which we do
not describe here. In the following section we will examine more closely a new framework
for IF,-geometry by Connes and Consani in spring 2009.

3. Fl-SCHEMES/:\ LA CONNES-CONSANI AND TORIFIED VARIETIES

The new notion of arff;-scheme due to Connes and Consani ([2]) combines the earlier
approaches of So@land of themselves with Deitmar’s theory of spectra of monoids and
Toen-Vaqué’s functorial viewpoint. First of all, Connes and Consani consider monoids
with 0 and remark that the spaces that are locally isomorphic to spectra of monoids with
0, called My-schemesare the same as locally representable functors of monoidsOwith
(Note that they do not make any Noetherian hypothesis). There is a natural notion of
morphism in this setting. The base extension is locally given by taking the semi-group
ring, i.e. if A is a monoid with zerd® 4 andX = Spec A is its spectrum, then

Xz = X ®r, Z := Spec(Z[A]/(1-04 — Oz14))).
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An TF;-scheme is a triplé X, X, ex ), whereX is an My-scheme X is a scheme and
ex : Xz — X is amorphism such thaty (k) : Xz (k) = X (k) is a bijection for all fields
k.

Note that anMo-schemeX defines thef;-scheme(X, X7,id ¢ ). We give first ex-
amples ofF,-schemes of this kind. The affine link; is the spectrum of the monoid
{T"}ien 11 {0} and, indeed, we have; ©p, Z ~ A'. The multiplicative groufiG,, r,
is the spectrum of the monoifil};cz 11 {0}, which base extends tG,, as desired.
Both examples can be extended to defiife andG;,, 5, by considering multiple variables
Ti,...,T,. More generally, allF;-schemes in the sense of Deitmar deliver examples of
M, and thudF;-schemes in this new sense. In particular, toric varieties can be realized.

To obtain a richer class of examples, we recall the definition of a torified variety as given
in a joint work with Javier lopez P@a ([6]). Atorified varietyis a varietyX together with
morphismex : T' — X such thatl’ ~ [],_, G2, wherel is a finite index set and; are
non-negative integers and such that for every figlthe morphisie x induces a bijection
T(k) = X (k). We callex : T — X atorification of X.

Note thatl" is isomorphic to the base extensidp of the M,-schemeX = 11

Thus every torified varietyx : T — X defines arFl-scheme(f(, X, ex).

In [6], a variety of examples are given. Most important for our purpose are toric va-
rieties, Grassmannians and split reductive groupsX 6 a toric variety of dimension
with fan A = {conesr C R"}, i.e. X = colim,ca SpecZ[A,], whered, = 7V NZ" is
the intersection the dual con¢’ c R™ with the dual latticeZ™ c R"™. Then the natural
morphism[ ] ., Spec Z[AX] — X is a torification ofX.

The Schubert cell decomposition@f(k, n) is amorphisni [ ¢y, Adw — Gr(k,n)
that induces a bijection df-points for all fieldsk. Since the affine spaces in this decom-
position can be further decomposed into tori, we obtain a torification T — Gr(k,n).

Note that the lowest-dimensional tori drelimensional and the number @fdimensional
tori is exactly# My, .

Let G be a split reductive group of rankwith maximal torusl” ~ G, , normalizerN
and Weyl grougV = N(Z)/T(Z). Let B be a Borel subgroup containiig The Bruhat
decompositiorﬂwew BwB — G, whereBwB ~ G, x A% for somed,, > 0, yields
a torificationeg : T — G analogously to the case of the Grassmannian. This defines
amodelG = (G,G,eq) overF;. Note that in this case the lowest-dimensional tori are
r-dimensional and that the numberetiimensional tori is exactly: V.

Clearly, there is a close connection between torified varieties arigh tkehemes in the
sense of Connes and Consani with the idea that Tits had in mind. However, the natural
choice of morphism in this category is a morphigm X — Y of M,-schemes together
with a morphismf : X — Y of schemes such that

d;
el Gm,IFl :

X, —r sy,
o,

X—Y

commutes. Unfortunately, the only reductive grodpe/hose group lawn : G x G — G
extends to a morphism: G x G — G in this sense such th&f, 1) becomes a group object
in the category oF-schemes are algebraic groups of the fa&¥m- G/, x (finite group.

In the following section we will show how to modify the notion of morphism to realize
Tits’ idea.

4. STRONG MORPHISMS

LetX = (X, X, ex)andy = (Y,Y,ey) tgeIFl—schemes. Then we define thank of a
pointx in the underlying topological spacé asrk z := rk Ofm, whereOx , is the stalk
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(of monoids) atr and(’)}w denotes its group of invertible elements. We defineréim of
X asrk X :=min__ ¢ {rkz} and we let

vrk . X
X% = J[ SpecO%,.
rk z=rk X

which is a subAfy-scheme ofX. A strong morphismp : X — Yis a pairg = (f, f),
wheref : X'k — Y% is a morphism of\/,-schemes angd : X — Y is a morphism of
schemes such that

Xtk Yk
T
X Y

commutes.

This notion comes already close to achieving our goal. In the categdfy-s€hemes
together with strong morphisms, the objéSpec{0, 1}, Spec Z, idspecz) is the terminal
object, which we should define 8pecF,. We define

X(Fy) := HomsyongSpecFy, X),

which equals the set of points 6f’* as every strong morphispecF; — X is deter-
mined by the image of the unique poift} of Spec{0,1} in X**. We see at once that
#X(F1) = #M, ,, if X is a model of the Grassmanniéh(k, n) asF;-scheme and that
#G(F,) = #W if G = (G, G, eq) is a model of a split reductive grouf with Weyl
groupW.

Furthermore, if the Weyl group can be lifted }(Z) as group, i.e. if the short exact
sequence of groups

1—T(Z) — N(Z) — W — 1

splits, then from the commutativity of

G x GiF Gk
\l/(ec;,eg) l/eG
GxG i G

we obtain a morphismi : G*% x G™ — G* of My-schemes such that = (1, m) :
g x G — G is a strong morphism that makgdnto a group object.

However,SL(n) provides an example where the Weyl group cannot be lifted. This leads
us, in the following section, to introduce a second kind of morphisms.

5. WEAK MORPHISMS
The morphisnBpec O , — *, to the terminal objectys, = Spec{0, 1} in the category
of My-schemes induces a morphism
Xk — H Spec(’))x(w — ¥y = H K0 -
zeXrk zeXrk

Givenf : X™* — Y'* there is a unique morphismy — xy such that
er 4f> Y/rk

I |

Xy —— > Xy

commutes. I~_e1>(rk denote the image eafy : X — X. Aweak morphisnp : X — Yis
apairg = (f, f), wheref : X™ — Y is a morphism of\/,-schemes and : X — Y
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is a morphism of schemes such that

Xik Jfz f/Zrk
\ \
(*+x)z (*y)z
er Yrk

commutes.

The key observation is that a weak morphigrs- (f, f) : X — Y has a base extension
f: X — Y toZ, but also induces a morphisf : X(F,) — Y(F). With this in hand,
we yield the following results.

6. ALGEBRAIC GROUPS OVERF;
The idea of Tits’ paper is now realized in the following form.

Theorem 6.1. Let G be a split reductive group with group law : G x G — G and

Weyl grouplV. LetG = (G‘, G, ec) be the model off as described before &8 -scheme.
Then there is morphismi : G x G — G of My-schemes such that= (1, m) is a weak
morphism that make§ into a group object. In particularg(F;) inherits the structure of
a group that is isomorphic tol.

We have already seen th&(F,) = M, ,, when' is amodel ofGr(n, k) asF;-scheme.
Furthermore, we have the following.

Theorem 6.2. Let G be a model of7 = GL(n) asFF;-scheme and let’ be a model of
X = Gr(k,n) asFy-scheme. Then the group action

f: GL(n) x Gr(k,n) — Gr(k,n),

induced by the action oR™~!, can be extended to a strong morphism G x X — X
such that the group action

o(F1) : Sy x My, — My,
of G(F,) = S, on X (F,) = My, is induced by the action of/,, = {1,...,n}.
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