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Interview with Sir Michael Atiyah on math, physics and fun

What makes a mathematics problem fun for you? |

The main thing that interests me in -
mathematics always is the
interconnection between different
parts of mathematics, the fact
that one problem may have half a
dozen different ways of being
looked at in different subjects, a
bit of algebra, a bit of geometry, a
bit of topology. It's this
interaction and bridges that
interest me.




In this talk, I will explain a connection
(motivated from physics) between three
seemingly unrelated subjects:

* Quantum and homological invariants of
knots and links

* Classical geometry of Higgs bundle
moduli spaces

* "Quantum symplectic geometry”,
Fukaya category, enumerative
Invariants, ...




Chern-Simons gauge theory

S= {Tr (AdA + 2AMANA)
M

» non-abelian interacting gauge theory (TQFT)
» has a long history ...
» has many applications ... @

to condensed matter physics
to string theory

to low dimensional topology

vV V VY V

to quantum information



Cutting and Gluing

closed 3-manifold M
closed 2-manifold X
closed 1-manifold S*!

point p

number Z (M)
vector space Z(X0)

category Z(S?)
2-category Z(p).

N



Cutting and Gluing

In three-dimensional TQFT: M.Atiyah, 6.Segal
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vector — l \\\\‘ vector

vector space
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Cutting and Gluing

In three-dimensional TQFT: M.Atiyah, 6.Segal

q D
vector — l \\\\‘ vector

vector space
ZMlé HZ H ZMZé HZ

Z

M=M,UM, = ZM) ={Z,|Z,)



Chern-Simons gauge theory

S = STr (AAJA + ';‘AA AAA)

M
M = 3-manifold (possibly with boundary) C@
M
s
ZM) = | e % oA
“quantum invariant” of M [N.Reshetikhin, V.Turaev]

> depends on the choice of the gauge group [E-Witten]

» depends on the “coupling constant” h

g =e’




Gauge Group

G = (simple) compact Lie group SU(2)
> j—[z finite-dimensional

» unitary representations discrete

G, = complexification of G SL(2,0)
> }{Z infinite-dimensional

> unitary representations continuous



Gauge Group

G = (simple) compact Lie group

> j—[z finite-dimensional

> unitary representations discrete

m) state sum model for Z(M)

G, = complexification of &

2lg

> :HZ infinite-dimensional

> unitary representations continuous
m) state integral model for Z(M)



The role of ¢

compact G :  q = root of 1

complexG : q € C

modaularity?

+ Surprising hidden symmetry:

42
a — La h%Lh:—%



The role of ¢

Galois automorphic
representations < >  representations
of G of "G
UN) U(N)

SO(2N) SO(2N)
SO(2N+1) Sp(2N)
E6 E6/Z;

ES “ S

Robert Langlands
» Surprising hidden symmetry:
4r°

G — L@ h—lh=—-"



Computing G, partition functions

\,‘ quantum
+ Dehn surgeries - ’rr'iangula’rlonS/ dilogarithm
N N—bo (%) dp;
Z95 (M h) / [ @x(A; |1 —
- d7h
Pj 1 1=1
choice of conTour A0 ( So 4+ S; + hSy + .. )
h

For details see e.g. arXiv:0903.2472
with T.Dimofte, J.Lenells, D.Zagier




"Looking back”

[R. Kashaev, 1996]

invariant <|(>r| e C

labeled by a positive
integer n

- defined via R-matrix
* very hard to compute
: 1 _ 3
lim - log <K> = Vol (§° \ K)

("volume conjecture”)



A first step to understanding
the Volume Conjecture

<K> = J,(q) colored Jones polynomial
with q = exp(2zi/n)

Hitoshi Murakami Jun Murakami (1999)



Colored Jones polynomial

Jz(q) = J (g) = Jones polynomial

* In Chern-Simons TQFT [E.Witten, 1989]

< @2> = polynomial in g

\ 2-dimn’l representation of SU(2)



Colored Jones polynomial

Jz(q) = J (g) = Jones polynomial

- Skein relations:

FI(%)-§" 3 (X) = (4*-9) 300
J (unknot) = ‘1:1 4

Example:

J(B)-4+9+7-9




Colored Jones polynomial

knot K n-colored Jones polynomial:
T K € 2147

/' R = n-dimn'l representation of SU(2)

» "Cabling formula":

J@@R@ (K, Q) — Z JR@ (K, Q)

Jr(K";q) = Jgen(K;q),



Colored Jones polynomial

knot K n-colored Jones polynomial:
T K € 2147

JI(K;Q):la
J2(K5q) = J(K;q) .
292 = 10 3 = J3(K;q) = J(K%q) -1,
209 = 2@ 2@ 4= J(K;q) =J(K’q) —2J(K;q)



Volume Conjecture

Murakami & Murakami:
<K>n = Jn(Ka qg = 6271"6'/7’2,)

_2mlog |, (K q = e*m/m))]
lim

n— o0 n

= Vol(M)

quantum group invariants <—— classical hyperbolic
(combinatorics, geometry

representation theory) \ i !



Interpretation in Chern-
Simons theory

- analytic continuation of SU(2) is SL(2,C)
/ \

91 (K q = 2mi/n

n— 00 n

- constant negative — flat SL(2,C) connection
curvature metric on M onM = S>3\ K

Rij = —2g dA+ANA = 0




Large Color Limit

Moral:
1 (SU(Z) Chern- ) . SL(2,C) Chern-
nlﬂqoo Simons/ Simons

Classical limit q = exp(2zi/n) — 1

* leads to many generalizations...

g=¢e" =1, n — 00, qn:@ (fixed)



Knots and Algebraic Curves

Generalized Volume Conjecture:

n—o 1 db
Jn(K,q — eh) ﬁ;jU exXp (—/logy?r | )

h
where planar algebraic
- — qn — fixed curve
A(x,y) = 0



Classical A-polynomial

[D.Cooper, M.Culler, H.Gillet, D.Long, P.B.Shalen]

M = 3-manifold
with a toral boundary, >
e.g. a knot complement

planar algebraic curve:

A-polynomial
. of a knot K
g
{(aﬁ,y) c C* x C"A(x,y) = O}

representation

variety: p:m (M) — SL(2,C)



Consider, for a example, a knot complement:




Properties of the A-polynomial
H{ (M) = Z for any knot complement

= Axy)=W-1)(...)

Abelian / \ non-Abelian

representations representations

- If K is a hyperbolic knot, then A(x,y) # y-1.

+ If K is a knot in a homology sphere, then the
A-polynomial involves only even powers of X.



Properties of the A-polynomial

» A-polynomial can distinguish mirror knots:

Axy) =0 <P . Axy) =0

- If K is a hyperbolic knot, then A(x,y) # y-1.

+ If K is a knot in a homology sphere, then the
A-polynomial involves only even powers of X.




Properties of the A-polynomial

» A-polynomial can distinguish mirror knots:

Axy) =0 <P . Axy) =0

'

* The A-polynomial is reciprocal:

Alx,y) ~ Alx7y™)

* The A-polynomial has integer coefficients




Properties of the A-polynomial

* The A-polynomial is tempered, /.e. the faces

of the Newton polygon of A(X,y) define
cyclotomic polynomials in one variable:

* The slopes of the sides of the Newton polygon
of A(X,V) are boundary slopes of
incompressible surfaces in M.



Branes in Hitchin moduli space

M = 3-manifold with boundary C (= genus-g
Riemann surface)

Example: g=1 =)
/ -

M knot complement

Example: g=2 ) graph complement

k< m




Branes in Hitchin moduli space

M = 3-manifold with boundary C (= genus-g
Riemann surface)

7 gauge theory on M
" M \dA FANA = 0
Lagrangian
submanifold hyper-Kahler manifold -
Mﬂat(G(Ca M) C Mﬂat(GC7 C) = MH(G7 C)

1

with respec‘r‘ro QJ:(.UK—FZ.(.U[ — 4 Qh/TI'(SA/\(SA
T C




Branes in Hitchin moduli space

M = 3-manifold with boundary C (= genus-g
Riemann surface)

A
( M \
Lagrangian
submanifold hyper-Kahler manifold

Mﬂat(G(Ca M) C Mﬂat(GC7 C) = MH(G7 C)

with respect to (); = wx + iw; = (A B,A) brane!



Lessons

- A-polynomial as a limit shape (in large color limit)

- the A-polynomial curve should be viewed as a
holomorphic Lagrangian submanifold (as opposed
to a complex equation) in moduli space of Higgs
bundles

- its quantization with symplectic form
leads to an interesting wave function

- has all the attributes to be an analog of the
Seiberg-Witten curve for knots and 3-manifolds

- Generalizations!

dy » Ox
X




From old to new ...

%




"Looking Forward"

- Two commutative deformations:

)

My

AR Y N
(a,t)=(1,-1)




"Looking Forward"

- Two commutative deformations:

A(X,)) > A ™(x,y;a,1)

Example: Alz,y) = (y— 1D (y + 2?)

& (a,f) -deformation

\ 4

o a(l —t*x 4 2t2(1 + at)x? + at®z® + a?t%2*)  a*t*(x — 1)2?

- +
J 1+ at3x Y 1+ at3x



"Looking Forward"

- Two commutative deformations:

A(X,)) > A ™(x,y;a,1)

- One non-commutative deformation:

P U

:I;jy A~ .I',y
d d o~
sz—y/\—x yx :@@

y £z
N A A

A (x.y;a.1) > AT (xyaq




Deformation and Quantization

using x =¢" and YP, = P,
we obtain the following recursion relation:
Asuper
A7 P(aqt)=0

- One non-commutative deformation:

P U

T, Y ~> T,

dy dx ~~
Q=N yr =(qky

A
AS“per(x,y;a, h=0 — Asuper(S\(J}’Z.anj HP =0



Deformation and Quantization

using x =¢" and YP, = P,
we obtain the following recursion relation:

ASU er
AP (aqt)=0

Example: A\S“per(fz:\, yia,q,t) = a+ Py + VY

= obF), + 6P +vF, 2 = 0

(N {

rational functions of a, q, X=qn, and |




Deformation and Quantization

Let's try to solve this recursion relation with

F(aqt)=0 forn<1 and F(a,q1) =1

Example: A\S“per(ff, yia,q,t) = a+ Py + VY

= obP, + /P, 1 +vFP,2 =0

(N {

rational functions of a, g, x=q" and t




What is Pla,g,1)?

Let's try to solve this recursion relation with

F,’,(a,q,t)=0 forn<1 and F;(a,q,t)=1

n P(a,q.t)

| N

aq_l -+ aqt2 + a?t3

a’q 2 + a’q(1 + @)t?> + a>(1 + @)t + a®¢*t* + >3 (1 + ¢)t° + a*¢>t"

= | DN

g0+ a’q(1+ g+ )+ a1+ ¢+ ) + a1+ g+ ¢*)t'+
+atq' (14 q)(1 + g+ )t° + a’¢* (a® + a*q + a*¢* + ¢°)t°+
+a'@®(1 4+ g+ ¢)t" + (1 + q + @)t + a®¢t°




What is Pla,g,1)?

Note, all /7'7’ (a,9,t) involve only positive integer

& coefficients

n P(a,q.t)

1

aq_l + aqt2 + a®t?

a’q 2 + a’q(1 + @)t?> + a>(1 + @)t + a®¢*t* + >3 (1 + ¢)t° + a*¢>t"

= | DN

g0+ a’q(1+ g+ )+ a1+ ¢+ ) + a1+ g+ ¢*)t'+
+atq' (14 q)(1 + g+ )t° + a’¢* (a® + a*q + a*¢* + ¢°)t°+
+a'@®(1 4+ g+ ¢)t" + (1 + q + @)t + a®¢t°




Colored HOMFLY homology

a
A 1] 3 a
4 H o . R /O
8
3 o o o o
8 o
2 e o o o alq'lto alqltz
> g > q
2 0 2 4
. P (a,0,0)
1 ]1

2 a,q_1 + aqt2 + a®t?

3 Va2 2 + a?q(1 + )t? + &> (1 + )3 + a?¢*t* + 3P (1 + q)t° + a*¢3tO




Colored Recursions

» colored Jones polynomial J;, (q)

- mathematically well defined for all n

» colored sl(2) homology

- mathematical definitions (!) for all n

+ colored HOMFLY-PT polynomial P (a,q)
- mathematical definition for all n

» colored HOMFLY homology
P(aqt) = P(H )

| J
v

n
+ defined for n=1 / conjectured for all n







