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Outline of the talk

Background: Twisted K-theory from Dirac type operators
on loop groups
q-Deformation of the Dirac family
The q-fermionic algebra and generalized affine Hecke
algebra
Quantum adjoint module
Twisting and the central element in Uq(ĝ)
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Gerbes and Fredholm operators

X is a topological parameter space, Fred∗ the space of
self-adjoint Fredholm operators in a complex Hilbert space H
with both positive and negative essential spectrum. This is a
universal classifying space for K 1. Actually, one can take as the
definition:

K 1(X ) = {homotopy classes of maps f : X → Fred∗}

Without loss of generality we can require that the Fredholm operators
have a discrete spectrum. In the even case

K 0(X ) = {homotopy classes of maps f : X → Fred}

where Fred is the space of all Fredholm operators in H.
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The Dixmier-Douady class

The Chern character

ch : K 1(X )→ Hodd (X ,Z)

is an additive map to odd cohomology classes. In particular, the
degree 3 component DD(f ) = ch3(f ) of [f ] ∈ K 1(X ) is called the
Dixmier-Douady class of the gerbe defined by the the family f (x)
of Fredholm operators. In the de Rham cohomology an equivalent
construction of DD(f ) comes from the family Lλλ′ of complex line
bundles. One can choose the curvature forms ωλλ′ such that

ωλλ′ + ωλ′λ′′ = ωλλ′′

and with a partition of unity
∑
ρλ = 1 subordinate to the cover by the

open sets Uλ one has

DD(f ) =
∑
λ

dρλ ∧ ωλλ′

and this does not depend on the choice of λ′.
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Twisting K-theory with the D-D class

The previous example can generalized: Let P → X be a
principal bundle with a right action of a group G. Fix a cocycle

ω : P × G → PU(H), with θ(p; g1g2) = θ(p; g1)θ(pg1; g2)

where PU(H) = U(H)/S1. Then a map f : P → Fred(H) with

f (pg) = θ(p; g)−1f (p)θ(p; g)

defines an element in the twisted K-group K 0(X ; θ). The group
K 1 is defined similarly using Fred∗ instead of Fred .
The groups K ∗(X , θ) actually depend only on the class of the
PU(H) bundle defined by the cocycle θ. This class is the
Dixmier-Douady class in H3(X ,Z).
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Example: The WZW model

Families of Dirac operators DA transform covariantly under the
(projective) gauge group action, defining an element in
K ∗(A/G, θ), where θ is defined by the projective action g 7→ ĝ in
the Fock spaces? False: The quantized Dirac operators are
essentially positive, we need operators with both negative and positive
essential spectrum. Solution: Hamiltonians in supersymmetric WZW
model:

QA = iψn
aT−n

a +
i

12
λabcψ

n
aψ

m
b ψ
−n−m
c + i(k + κ)ψn

aA−n
a

ψn
aψ

m
b + ψm

b ψ
n
a = 2δabδn,−m

[T n
a ,T

m
b ] = λabcT n+m

c + kδabnδn,−m.

Here An
a’s are the Fourier components of a vector potential on the

circle.
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The WZW model

The family QA transforms covariantly under the projective
representation of level k + κ the loop group G = LG defining an
element in K (G, k + κ) corresponding to the D-D class [H] in
H3(G,Z) equal to k + κ times the basic class in H3(G) = Z
when G is a simple simply connected compact Lie group.
Actually, since A/ΩG = G and G ⊂ LG, we have an G
equivariant class, element of K ∗G(G,H).

Morally, the family QA is a family of Dirac operators on the loop
group LG, coupled to a gauge connection A on a complex line
bundle over LG.
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Quantum affine algebra

g a simple finite-dimensional Lie algebra, ĝ the associated
affine Lie algebra. The quantum affine algebra Uq(ĝ) is
generated by
e0,e1, . . . ,e`, f0, f1, . . . , f`,K0,K1, . . . ,K`,K−1

0 , . . . ,K−1
` with the

relations

[ei , fi ] = δij
Ki − K−1

i
q − q−1 ,KiKj = KjKi

KiejK−1
i = qαij ej ,Ki fjK−1

i = q−αij fj
1−aij∑
k=0

(−1)k
[

1− aij
k

]
q

e1−aij−k
i ejek

i = 0(i 6= j)

1−aij∑
k=0

(−1)k
[

1− aij
k

]
q

f 1−aij−k
i fj f k

i = 0(i 6= j)
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with [
m
k

]
q

=
mq(m − 1)q . . . (m − k + 1)q

kq(k − 1)q . . . 1q

kq = 1 + q + . . . qk−1

q is a positive real number in this talk and the integers aij are
the matrix elements of the Cartan matrix of ĝ.
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The Dirac operator

Let An
i with n ∈ Z and i = 0,1, . . .dim g be a basis for the

q-affine adjoint module. Under g each ’Fourier mode’ An

transforms acording to the adjoint representation of Uq(g),
which is a q-deformation of the adjoint representation of g. The
generator e0 increases the index n by one unit, f0 decreases it
by one unit. For example, for g = sl(2) one has the explicit
formulas

e1An
1 = f0An

1 = 0, f1An
1 = An

0,e0An
1 = An+1

0

e1An
0 = (q + q−1)An

1, f0An
0 = (q + q−1)An−1

1

f1An
0 = An

−1,e0An
0 = An+1

−1

e1An
−1 = (q + q−1)An

0, f0An
−1 = (q + q−1)An−1

0 , f1An
−1 = 0 = e0An

−1

K1An
i = q2iAn

i = K−1
0 An

i .
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The Dirac operator

The vectors An
i will be constructed as operators acting in a Fock

space carrying a representation of Uq(ĝ) such that the adjoint
action is given by

x .An
i =

∑
(x)

x ′An
i S(x ′′) for x ∈ Uq(ĝ),

where S : Uq(ĝ)→ Uq(ĝ) is the antipode and
∆(x) =

∑
(x) x ′ ⊗ x ′′ is the coproduct ∆ : Uq → Uq ⊗ Uq. We

also need the Clifford algebra generated by elements ψn
i acting

in the Fock space and transforming under Uq(ĝ) according to
the dual adjoint representation (which in fact is equivalent to the
adjoint representation).

Jouko Mickelsson Families of Dirac operators and quantum affine groups



The Dirac operator

The Dirac operator Q is acting in Hf ⊗ Hb where Hf is the
q-fermionic Fock space and Hb carries another highest weight
representation of Uq(ĝ).

Q =
∑

ψn
i ⊗ B−n

i +
1
3

∑
ψn

i A−n
i ⊗ 1

where Bn
i is another copy of the adjoint module, acting in the

space Hb.
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The adjoint module

Let R be the universal R-matrix for the algebra Uq. An explicit
construction is given in [KT]. Following [DG], we can then
define a basis for vectors in a submodule A ⊂ Uq transforming
according to an adjoint representation

adq(x)v =
∑
(x)

x ′vS(x ′′)

of Uq on itself. A basis is defined as

An
i =

∑
K m,α;p,β

n,i (πm,α;p,β ⊗ id)A,

where A = (RT R − 1)/h, with eh = q and RT = σRσ, where σ
permutes the factors in the tensor product Uq ⊗ Uq. Here
πm,α;p,β are the matrix elements in the defining representation
V of Uq.
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The adjoint module

For example, for ĝ = ŝl(2) the basis in the defining
representation is vn

i with n ∈ Z and i = −1,0,1 and α, β = ±.
The numerical coefficients K come from the identification of the
basis of the adjoint representation as linear combinations of the
basis vectors in V ⊗ V .
The action of the Serre generators in the defining
representation is

e1vn
+ = f0vn

+ = 0, f1vn
+ = vn

−,e0vn
+ = vn+1

− ,e0vn
+ = vn−1

−

e1vn
− = vn

+, f0vn
− = vn−1

+ ,e0vn
− = 0 = f1vn

−

K1vn
± = q±1vn

± = K−1
0 vn

±.
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Generalized affine Hecke algebra, Uq(ŝl(2))

The affine Hecke algebra for ĝ is defined through the relations
[Leclerc] coming from the R-matrix
Ř = σR in the tensor product V 0 ⊗ V 0. The matrix satisfies

(Ř− q−1)(Ř + q) = 0,

since −q and q−1 are the only eigenvalues of the invertible
matrix Ř. Denote by Y1 the shift operator which sends vn

i ⊗ vm
j

to vn+1
i ⊗ vm

j and by Y2 the corresponding shift operator acting
on the second tensor factor. The matrix Ř acting on V is then
defined using the relations

ŘY1 = Y2Ř
−1
, ŘY2 = Y1Ř + (q − q−1)Y2.

Actually, the second relation follows from the first and the
minimal polynomial relation.
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Generalized affine Hecke algebra

Now the braiding relations are given by setting the ideal in the
tensor algebra of V generated by the elements

(q−1 + Ř)(V ⊗ V )

equal to zero. These have in particular the consequence that
any vn

i vm
j with n > m can be written as a linear combination of

vectors vp
k vq

l with p + q = n + m and p ≤ q. In the zero mode
space V 0 the meaning of the braiding relations is that they
project out the ’symmetric’ part of the tensor product V 0 ⊗ V 0.
The 3-dimensional representation is the eigenspace of Ř with
eigenvalue q−1 and the 1-dimensional component corresponds
to the eigenvalue −q.
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Generalized affine Hecke algebra

To complete the construction of the Dirac operator we need
also the generalized Clifford algebra in the coadjoint
representation. The algebra is generated by vectors ψn

i with
n ∈ Z and i = 1,0,−1. The defining relations are given by
braiding relations and an invariant (nonsymmetric) bilinear
form. The braiding relations are defined recursively like in the
case of V ,V ∗, with the difference that since the R-matrix Ř in
the adjoint representation has 3 instead of 2 different
eigenvalues, which are now −q−2,q2,q−4, with multiplicities
3,5,1 respectively.
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Generalized Hecke algebra

The negative eigenvalue corresponds again to a 3-dimensional
’antisymmetric’ representation and the positive eigenvalues to a
6-dimensional ’symmetric’ representation; the latter contains
the 1-dimensional trivial representation.
The Hecke algebra is replaced by a generalized Hecke algebra,

Y1Y2 = Y2Y1

(Ř− q2)(Ř− q−4)(Ř + q−2) = 0

ŘY1 = Y2Ř
−1
, ŘY2 = YiŘ + (q2 − q−2)Y2

where the middle relation is the minimal polynomial of the
diagonalizable matrix Ř.
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q-Clifford algebra

The generalized symmetric tensors correspond to positive
eigenvalues of Ř. In the Clifford algebra symmetrized products
are identified as scalars times the unit. That is, we fix a
Uq(ŝl(2)) invariant bilinear form B and the Clifford algebra is
defined as the tensor algebra over V modulo the ideal
generated by

P(u ⊗ v)− 2B(u, v) · 1

where P is the projection on positive spectral subspace of Ř. In
the case when V is the adjoint module for Uq(ŝl(2)) one can fix
B by identifying the first factor V as the dual V ∗ and using the
natural pairing V ∗ ⊗ V → C. Alternatively, one can view B as
the projection onto the 1-dimensional trivial submodule inside
of the ’symmetric module’.
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The action of Uq(ŝl(2)) on Q

In the nondeformed case one has for an infinitesimal gauge
transformation X ∈ Lg

[X ,Q] = (k + κ)
∑

(−n)ψn
i X−n

i = (k + κ) < ψ,dX >

and for a family of operators QA = Q + (k + κ)ψn
i A−n

i

[X ,QA] = (k + κ) < ψ, [A,X ] + dX > .

In q-deformed case A is to be understood as a vector in the
adjoint module extended by Cc. Thus

x .cv = x .v + λ(x)c

with λ a linear form on Uq(ŝl(2)).
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