A structure theorem for multiplicative functions and applications (joint work with Bernard Host)

Nikos Frantzikinakis
University of Crete, Greece

Bonn, July 2014

Three interconnected topics

Three interconnected topics

(1) Structure theorem for multiplicative functions on the integers:

$$
\chi(n)=\chi_{s t}(n)+\chi_{u n}(n), \chi_{s t} \text { periodic, } \chi_{u n} \text { uniform. }
$$

Three interconnected topics

(1) Structure theorem for multiplicative functions on the integers:

$$
\chi(n)=\chi_{s t}(n)+\chi_{u n}(n), \chi_{s t} \text { periodic, } \chi_{u n} \text { uniform. }
$$

(2) Partition regularity of quadratic equations:

$$
9 x^{2}+16 y^{2}=\lambda^{2}
$$

Three interconnected topics

(1) Structure theorem for multiplicative functions on the integers:

$$
\chi(n)=\chi_{s t}(n)+\chi_{u n}(n), \chi_{s t} \text { periodic, } \chi_{u n} \text { uniform. }
$$

(2) Partition regularity of quadratic equations:

$$
9 x^{2}+16 y^{2}=\lambda^{2}
$$

(3) Problems related to Chowla's conjecture:

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{1 \leq m, n \leq N} \lambda(P(m, n))=0
$$

Partition regularity

Definition
 $P(x, y, z)=0$ is partition regular if on every finite partition of \mathbb{N} the equation is satisfied for some distinct x, y, z on the same cell.

Partition regularity

Definition

$P(x, y, z)=0$ is partition regular if on every finite partition of \mathbb{N} the equation is satisfied for some distinct x, y, z on the same cell.

Examples

- $x+y=z, \quad$ (Schur 1916).

Partition regularity

Definition

$P(x, y, z)=0$ is partition regular if on every finite partition of \mathbb{N} the equation is satisfied for some distinct x, y, z on the same cell.

Examples

- $x+y=z$,
(Schur 1916).
- $x+y=2 z, \quad$ (van der Waerden 1927).

Partition regularity

Definition

$P(x, y, z)=0$ is partition regular if on every finite partition of \mathbb{N} the equation is satisfied for some distinct x, y, z on the same cell.

Examples

- $x+y=z, \quad$ (Schur 1916).
- $x+y=2 z, \quad$ (van der Waerden 1927).
- $a x+b y=c z$, iff $a=c$, or $b=c$, or $a+b=c \quad$ (Rado 1933).

Partition regularity

Definition

$P(x, y, z)=0$ is partition regular if on every finite partition of \mathbb{N} the equation is satisfied for some distinct x, y, z on the same cell.

Examples

- $x+y=z, \quad$ (Schur 1916).
- $x+y=2 z, \quad$ (van der Waerden 1927).
- $a x+b y=c z$, iff $a=c$, or $b=c$, or $a+b=c \quad$ (Rado 1933).

Problem

- $x^{2}+y^{2}=z^{2}$, (Erdös, 70's).
- $x^{2}+y^{2}=2 z^{2}, \quad$ (Green, Gyarmati, Rusza).
- $a x^{2}+b y^{2}=c z^{2}$, iff $a=c$, or $b=c$, or $a+b=c$.

Weak partition regularity

Definition

$P(x, y, \lambda)=0$ is weakly partition regular if on every finite partition of \mathbb{N} equation is satisfied for some distinct x, y on the same cell and $\lambda \in \mathbb{N}$.

Weak partition regularity

Definition

$P(x, y, \lambda)=0$ is weakly partition regular if on every finite partition of \mathbb{N} equation is satisfied for some distinct x, y on the same cell and $\lambda \in \mathbb{N}$.

Examples

- $x-y=\lambda^{2}, \quad$ (Furstenberg, Sárközy, late 70's).
- $x+y=\lambda^{2}$ (or $2 \lambda^{2}$), (Khalfalah, Szemerédi 2006).

Weak partition regularity

Definition

$P(x, y, \lambda)=0$ is weakly partition regular if on every finite partition of \mathbb{N} equation is satisfied for some distinct x, y on the same cell and $\lambda \in \mathbb{N}$.

Examples

- $x-y=\lambda^{2}, \quad$ (Furstenberg, Sárközy, late 70's).
- $x+y=\lambda^{2}$ (or $2 \lambda^{2}$), (Khalfalah, Szemerédi 2006).

Problem

- $x^{2}+y^{2}=\lambda^{2}$.
- $x^{2}-y^{2}=\lambda^{2}$.
- $x^{2}+y^{2}=2 \lambda^{2}$.

New partition regularity results

Theorem (F., Host 2014)

The following equation is weakly partition regular

$$
9 x^{2}+16 y^{2}=\lambda^{2}
$$

New partition regularity results

Theorem (F., Host 2014)

The following equation is weakly partition regular

$$
9 x^{2}+16 y^{2}=\lambda^{2}
$$

More generally,

$$
a x^{2}+b y^{2}=\lambda^{2}
$$

is weakly partition regular if a, b, and $a+b$ are squares.

New partition regularity results

Theorem (F., Host 2014)

The following equation is weakly partition regular

$$
9 x^{2}+16 y^{2}=\lambda^{2}
$$

More generally,

$$
a x^{2}+b y^{2}=\lambda^{2}
$$

is weakly partition regular if a, b, and $a+b$ are squares.
Even more generally...

$$
a x^{2}+b y^{2}+c z^{2}+d x y+e x z+f y z=0
$$

is w.p.r. if the following numbers are non-zero squares

New partition regularity results

Theorem (F., Host 2014)

The following equation is weakly partition regular

$$
9 x^{2}+16 y^{2}=\lambda^{2}
$$

More generally,

$$
a x^{2}+b y^{2}=\lambda^{2}
$$

is weakly partition regular if a, b, and $a+b$ are squares.
Even more generally...

$$
a x^{2}+b y^{2}+c z^{2}+d x y+e x z+f y z=0
$$

is w.p.r. if the following numbers are non-zero squares

$$
e^{2}-4 a c, \quad f^{2}-4 b c, \quad(e+f)^{2}-4 c(a+b+d)
$$

We can also deal with some higher degree equations.

Idea of proof for $9 x^{2}+16 y^{2}=\lambda^{2}$

- Solutions of $9 x^{2}+16 y^{2}=\lambda^{2}$ in parametric form:

$$
\begin{gathered}
x=k m(m+3 n), y=k(m+n)(m-3 n), \\
\lambda=k\left(5 m^{2}+9 n^{2}+6 m n\right) .
\end{gathered}
$$

Idea of proof for $9 x^{2}+16 y^{2}=\lambda^{2}$

- Solutions of $9 x^{2}+16 y^{2}=\lambda^{2}$ in parametric form:

$$
\begin{gathered}
x=k m(m+3 n), y=k(m+n)(m-3 n), \\
\lambda=k\left(5 m^{2}+9 n^{2}+6 m n\right) .
\end{gathered}
$$

- Density regularity: If $d_{m u l t}(E)>0$, then $\exists k, m, n \in \mathbb{N}$ s.t.

$$
k m(m+3 n) \text { and } k(m+n)(m-3 n) \in E
$$

Idea of proof for $9 x^{2}+16 y^{2}=\lambda^{2}$

- Solutions of $9 x^{2}+16 y^{2}=\lambda^{2}$ in parametric form:

$$
\begin{gathered}
x=k m(m+3 n), y=k(m+n)(m-3 n), \\
\lambda=k\left(5 m^{2}+9 n^{2}+6 m n\right) .
\end{gathered}
$$

- Density regularity: If $d_{m u l t}(E)>0$, then $\exists k, m, n \in \mathbb{N}$ s.t.

$$
k m(m+3 n) \text { and } k(m+n)(m-3 n) \in E
$$

- Ergodic reformulation: $\left(X, \mathcal{X}, \mu, T_{n}\right), T_{m n}=T_{m} \circ T_{n}, \mu(A)>0$, then $\exists m, n \in \mathbb{N}$ s.t.

$$
\mu\left(T_{m(m+3 n)}^{-1} A \cap T_{(m+n)(m-3 n)}^{-1} A\right)>0
$$

Idea of proof for $9 x^{2}+16 y^{2}=\lambda^{2}$

- Herglotz's theorem on \mathbb{Q} : There exists a positive measure ν on

$$
\mathcal{M}=\{\chi: \mathbb{N} \rightarrow \mathbb{T}: \chi(m n)=\chi(m) \chi(n) \text { for every } m, n \in \mathbb{N}\}
$$

such that for every $r, s \in \mathbb{N}$

$$
\mu\left(T_{r}^{-1} A \cap T_{s}^{-1} A\right)=\int_{\mathcal{M}} \chi(r) \cdot \bar{\chi}(s) d \nu(\chi)
$$

Idea of proof for $9 x^{2}+16 y^{2}=\lambda^{2}$

- Herglotz's theorem on \mathbb{Q} : There exists a positive measure ν on

$$
\mathcal{M}=\{\chi: \mathbb{N} \rightarrow \mathbb{T}: \chi(m n)=\chi(m) \chi(n) \text { for every } m, n \in \mathbb{N}\}
$$

such that for every $r, s \in \mathbb{N}$

$$
\mu\left(T_{r}^{-1} A \cap T_{s}^{-1} A\right)=\int_{\mathcal{M}} \chi(r) \cdot \bar{\chi}(s) d \nu(\chi)
$$

- Analytic reformulation: Under some assumptions on ν we have

$$
\begin{gathered}
\liminf _{N \rightarrow \infty} \int_{\mathcal{M}} A_{N}(\chi) d \nu(\chi)>0, \quad \text { where } \\
A_{N}(\chi)=\frac{1}{N^{2}} \sum_{1 \leq m, n \leq N} \chi(m) \cdot \chi(m+3 n) \cdot \bar{\chi}(m+n) \cdot \bar{\chi}(m-3 n) .
\end{gathered}
$$

- Key tool: A structural result for multiplicative functions.

Multiplicative functions

Definition

$$
\mathcal{M}=\{\chi: \mathbb{N} \rightarrow \mathbb{U}: \chi(m n)=\chi(m) \chi(n) \text { whenever }(m, n)=1\}
$$

Multiplicative functions

Definition

$$
\mathcal{M}=\{\chi: \mathbb{N} \rightarrow \mathbb{U}: \chi(m n)=\chi(m) \chi(n) \text { whenever }(m, n)=1\}
$$

Examples

- The Liouville function, $\lambda(n)=(-1)^{\mid \text {prime factors of } n \mid}$ (uniform).
- The Möbius function (uniform).

Multiplicative functions

Definition

$$
\mathcal{M}=\{\chi: \mathbb{N} \rightarrow \mathbb{U}: \chi(m n)=\chi(m) \chi(n) \text { whenever }(m, n)=1\}
$$

Examples

- The Liouville function, $\lambda(n)=(-1)^{\mid \text {prime factors of } n \mid}$ (uniform).
- The Möbius function (uniform).
- $\chi(n)=n^{i t}$ (average on $[1, N]$ is $\sim N^{i t} /(1+i t)$).

Multiplicative functions

Definition

$$
\mathcal{M}=\{\chi: \mathbb{N} \rightarrow \mathbb{U}: \chi(m n)=\chi(m) \chi(n) \text { whenever }(m, n)=1\}
$$

Examples

- The Liouville function, $\lambda(n)=(-1)^{\mid p r i m e ~ f a c t o r s ~ o f ~} n \mid$ (uniform).
- The Möbius function (uniform).
- $\chi(n)=n^{i t}$ (average on $[1, N]$ is $\sim N^{i t} /(1+i t)$).
- Dirichlet characters (periodic).
- $\chi(2)=-1, \chi(p)=1$ for $p \neq 2$ (non-uniform and non-periodic).

Structure theorem for multiplicative functions

Theorem (F., Host 2014)

Structure theorem for multiplicative functions

Theorem (F., Host 2014)

For every $\varepsilon>0, s \in \mathbb{N}$, there exist $q \in \mathbb{N}, C>0$, such that for every $\chi \in \mathcal{M}$ and $N \in \mathbb{N}$, there exist $\chi_{\text {st }}, \chi_{u n}$ bounded by 2 such that
(1) $\chi(n)=\chi_{s t}(n)+\chi_{u n}(n), \quad n=1, \ldots, N$;

Structure theorem for multiplicative functions

Theorem (F., Host 2014)

For every $\varepsilon>0, s \in \mathbb{N}$, there exist $q \in \mathbb{N}, C>0$, such that for every $\chi \in \mathcal{M}$ and $N \in \mathbb{N}$, there exist $\chi_{\text {st }}, \chi$ un bounded by 2 such that
(1) $\chi(n)=\chi_{s t}(n)+\chi_{u n}(n), \quad n=1, \ldots, N$;
(2) $\left|\chi_{s t}(n+q)-\chi_{s t}(n)\right| \leq \frac{C}{N}, \quad n=1, \ldots, N$;

Structure theorem for multiplicative functions

Theorem (F., Host 2014)

For every $\varepsilon>0, s \in \mathbb{N}$, there exist $q \in \mathbb{N}, C>0$, such that for every $\chi \in \mathcal{M}$ and $N \in \mathbb{N}$, there exist $\chi_{\text {st }}, \chi$ un bounded by 2 such that
(1) $\chi(n)=\chi_{s t}(n)+\chi_{u n}(n), \quad n=1, \ldots, N$;
(2) $\left|\chi_{s t}(n+q)-\chi_{s t}(n)\right| \leq \frac{C}{N}, \quad n=1, \ldots, N$;
(3) $\left\|\chi_{u n}\right\|_{U s\left(\mathbb{Z}_{N}\right)} \leq \varepsilon$.

Structure theorem for multiplicative functions

Theorem (F., Host 2014)

For every $\varepsilon>0, s \in \mathbb{N}$, there exist $q \in \mathbb{N}, C>0$, such that for every $\chi \in \mathcal{M}$ and $N \in \mathbb{N}$, there exist $\chi_{\text {st }}$, χ un bounded by 2 such that
(1) $\chi(n)=\chi_{s t}(n)+\chi_{u n}(n), \quad n=1, \ldots, N$;
(2) $\left|\chi_{s t}(n+q)-\chi_{s t}(n)\right| \leq \frac{C}{N}, \quad n=1, \ldots, N$;
(8) $\left\|\chi_{u n}\right\|_{U^{s}\left(\mathbb{Z}_{N}\right)} \leq \varepsilon$.

- The constants q, C do not depend on N or on χ.

Structure theorem for multiplicative functions

Theorem (F., Host 2014)

For every $\varepsilon>0, s \in \mathbb{N}$, there exist $q \in \mathbb{N}, C>0$, such that for every $\chi \in \mathcal{M}$ and $N \in \mathbb{N}$, there exist $\chi_{s t}, \chi_{\text {un }}$ bounded by 2 such that
(1) $\chi(n)=\chi_{s t}(n)+\chi_{u n}(n), \quad n=1, \ldots, N$;
(2) $\left|\chi_{s t}(n+q)-\chi_{s t}(n)\right| \leq \frac{C}{N}, \quad n=1, \ldots, N$;
(3) $\left\|\chi_{u n}\right\|_{U^{s}\left(\mathbb{Z}_{N}\right)} \leq \varepsilon$.

- The constants q, C do not depend on N or on χ.
- Applies to arbitrary bounded multiplicative functions, not just the Liouville or the Möbius (a case dealt by Green, Tao, Ziegler).

Structure theorem for multiplicative functions

Theorem (F., Host 2014)

For every $\varepsilon>0, s \in \mathbb{N}$, there exist $q \in \mathbb{N}, C>0$, such that for every $\chi \in \mathcal{M}$ and $N \in \mathbb{N}$, there exist $\chi_{s t}, \chi_{\text {un }}$ bounded by 2 such that
(1) $\chi(n)=\chi_{s t}(n)+\chi_{u n}(n), \quad n=1, \ldots, N$;
(2) $\left|\chi_{s t}(n+q)-\chi_{s t}(n)\right| \leq \frac{C}{N}, \quad n=1, \ldots, N$;
(3) $\left\|\chi_{u n}\right\|_{U^{s}\left(\mathbb{Z}_{N}\right)} \leq \varepsilon$.

- The constants q, C do not depend on N or on χ.
- Applies to arbitrary bounded multiplicative functions, not just the Liouville or the Möbius (a case dealt by Green, Tao, Ziegler).
- $\chi_{s t}=\chi * \psi$ where ψ is a kernel with close to "rational" spectrum.

Uniformity of multiplicative functions

Uniformity of multiplicative functions

Definition

A multiplicative function is aperiodic if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi(a n+b)=0 \text { for every } a, b \in \mathbb{N}
$$

Uniformity of multiplicative functions

Definition

A multiplicative function is aperiodic if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi(a n+b)=0 \text { for every } a, b \in \mathbb{N}
$$

If $\chi(p) \in[-1,1-\delta]$ for some $\delta>0$ for all primes p, then χ is aperiodic (follows from Halász (1968)).

Uniformity of multiplicative functions

Definition

A multiplicative function is aperiodic if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi(a n+b)=0 \text { for every } a, b \in \mathbb{N}
$$

If $\chi(p) \in[-1,1-\delta]$ for some $\delta>0$ for all primes p, then χ is aperiodic (follows from Halász (1968)).

Theorem

For a bounded multiplicative function the following are equivalent:

- χ is aperiodic;
- $\lim _{N \rightarrow \infty}\|\chi\|_{U^{2}\left(\mathbb{Z}_{N}\right)}=0$;
- $\lim _{N \rightarrow \infty}\|\chi\|_{U^{s}\left(\mathbb{Z}_{N}\right)}=0$ for every $s \in \mathbb{N}$.

Uniformity of multiplicative functions

Definition

A multiplicative function is aperiodic if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi(a n+b)=0 \text { for every } a, b \in \mathbb{N}
$$

If $\chi(p) \in[-1,1-\delta]$ for some $\delta>0$ for all primes p, then χ is aperiodic (follows from Halász (1968)).

Theorem

For a bounded multiplicative function the following are equivalent:

- χ is aperiodic;
- $\lim _{N \rightarrow \infty}\|\chi\|_{U^{2}\left(\mathbb{Z}_{N}\right)}=0$;
- $\lim _{N \rightarrow \infty}\|\chi\|_{U^{s}\left(\mathbb{Z}_{N}\right)}=0$ for every $s \in \mathbb{N}$.

Proof of structure theorem: Main steps

(1) Inverse theorem (Green, Tao, Ziegler): If $\|\chi\|_{U^{s}\left(\mathbb{Z}_{N}\right)} \geq \varepsilon$, then

$$
\begin{equation*}
\left|\frac{1}{N} \sum_{n=1}^{N} \chi(n) f(n)\right| \geq \delta(\varepsilon, s), \tag{1}
\end{equation*}
$$

where $(f(n))$ is a $(s-1)$-step nilsequence of bdd complexity.

Proof of structure theorem: Main steps

(1) Inverse theorem (Green, Tao, Ziegler): If $\|\chi\|_{U^{s}\left(\mathbb{Z}_{N}\right)} \geq \varepsilon$, then

$$
\begin{equation*}
\left|\frac{1}{N} \sum_{n=1}^{N} \chi(n) f(n)\right| \geq \delta(\varepsilon, s) \tag{1}
\end{equation*}
$$

where $(f(n))$ is a $(s-1)$-step nilsequence of bdd complexity.
(2) (1)+ Multiplicativity $\Longrightarrow \chi$ correlates with a "rational" phase:

Proof of structure theorem: Main steps

(1) Inverse theorem (Green, Tao, Ziegler): If $\|\chi\|_{U^{s}\left(\mathbb{Z}_{N}\right)} \geq \varepsilon$, then

$$
\begin{equation*}
\left|\frac{1}{N} \sum_{n=1}^{N} \chi(n) f(n)\right| \geq \delta(\varepsilon, s) \tag{1}
\end{equation*}
$$

where $(f(n))$ is a $(s-1)$-step nilsequence of bdd complexity.
(2) (1)+ Multiplicativity $\Longrightarrow \chi$ correlates with a "rational" phase:

$$
\begin{equation*}
\left|\frac{1}{N} \sum_{n=1}^{N} \chi(n) e^{2 \pi i n \cdot \frac{\xi}{N}}\right| \geq \delta^{\prime}(\varepsilon, s), \quad \text { where }\left|\frac{\xi}{N}-\frac{p}{q}\right| \leq \frac{C}{N} \tag{2}
\end{equation*}
$$

There are only $O_{\varepsilon, s}(1)$ such ξ.

Proof of structure theorem: Main steps

(1) Inverse theorem (Green, Tao, Ziegler): If $\|\chi\|_{U^{s}\left(\mathbb{Z}_{N}\right)} \geq \varepsilon$, then

$$
\begin{equation*}
\left|\frac{1}{N} \sum_{n=1}^{N} \chi(n) f(n)\right| \geq \delta(\varepsilon, s) \tag{1}
\end{equation*}
$$

where $(f(n))$ is a $(s-1)$-step nilsequence of bdd complexity.
(2) (1)+ Multiplicativity $\Longrightarrow \chi$ correlates with a "rational" phase:

$$
\begin{equation*}
\left|\frac{1}{N} \sum_{n=1}^{N} \chi(n) e^{2 \pi i n \cdot \frac{\xi}{N}}\right| \geq \delta^{\prime}(\varepsilon, s), \quad \text { where }\left|\frac{\xi}{N}-\frac{p}{q}\right| \leq \frac{C}{N} \tag{2}
\end{equation*}
$$

There are only $O_{\varepsilon, S}(1)$ such ξ.
(3) ϕ kernel with spectrum supported on "bad" frequences (2), then

$$
\begin{gathered}
\left\|\chi-\chi_{s t}\right\|_{U^{s}\left(\mathbb{Z}_{N}\right)} \leq \varepsilon, \quad \text { where } \chi_{s t}=\chi_{*} \phi \\
\chi=\chi_{s t}+\chi_{u n}, \quad \text { where } \chi_{u n}=\chi-\chi_{s t}
\end{gathered}
$$

Idea of proof of Step 2 (infinitary world-linear case)

- Suffices to show orthogonality to irrational nilsequences.

Idea of proof of Step 2 (infinitary world-linear case)

- Suffices to show orthogonality to irrational nilsequences. $X=G / \Gamma$ nilmanifold, $a \in G$ totally ergodic, $\int_{X} \Phi d m_{X}=0$, then

$$
\frac{1}{N} \sum_{n=1}^{N} \chi(n) \Phi\left(a^{n} \Gamma\right) \rightarrow 0, \quad \forall \chi \in \mathcal{M}
$$

Furthermore, can assume that $\Phi \in C(X)$ is a "nil-character":

Idea of proof of Step 2 (infinitary world-linear case)

- Suffices to show orthogonality to irrational nilsequences. $X=G / \Gamma$ nilmanifold, $a \in G$ totally ergodic, $\int_{X} \Phi d m_{X}=0$, then

$$
\frac{1}{N} \sum_{n=1}^{N} \chi(n) \Phi\left(a^{n} \Gamma\right) \rightarrow 0, \quad \forall \chi \in \mathcal{M}
$$

Furthermore, can assume that $\Phi \in C(X)$ is a "nil-character":

- Kátai's orthogonality criterion (1984): For $\chi \in \mathcal{M}$ we have

$$
\frac{1}{N} \sum_{n=1}^{N} f(p n) \bar{f}(q n) \rightarrow 0, \forall p \neq q \in \mathbb{N} \Longrightarrow \frac{1}{N} \sum_{n=1}^{N} \chi(n) f(n) \rightarrow 0
$$

Idea of proof of Step 2 (infinitary world-linear case)

- Suffices to show orthogonality to irrational nilsequences. $X=G / \Gamma$ nilmanifold, $a \in G$ totally ergodic, $\int_{X} \Phi d m_{X}=0$, then

$$
\frac{1}{N} \sum_{n=1}^{N} \chi(n) \Phi\left(a^{n} \Gamma\right) \rightarrow 0, \quad \forall \chi \in \mathcal{M}
$$

Furthermore, can assume that $\Phi \in C(X)$ is a "nil-character":

- Kátai's orthogonality criterion (1984): For $\chi \in \mathcal{M}$ we have

$$
\frac{1}{N} \sum_{n=1}^{N} f(p n) \bar{f}(q n) \rightarrow 0, \forall p \neq q \in \mathbb{N} \Longrightarrow \frac{1}{N} \sum_{n=1}^{N} \chi(n) f(n) \rightarrow 0
$$

- New Goal: $G / \Gamma s$-step, $a \in G$ ergodic, Φ nil-character, $p \neq q$, then

$$
\frac{1}{N} \sum_{n=1}^{N} \Phi\left(a^{p n} \Gamma\right) \cdot \bar{\Phi}\left(a^{q n} \Gamma\right) \rightarrow 0
$$

Idea of proof of Step 2 (infinitary world-linear case)

- Goal: $G / \Gamma s$-step, $a \in G$ ergodic, Φ nil-character, $p \neq q$, then $\left(a^{p n} \Gamma, a^{q n} \Gamma\right)$ is equidistributed on some Y s.t. $\int_{Y}(\Phi \otimes \bar{\Phi}) d m_{Y}=0$.

Idea of proof of Step 2 (infinitary world-linear case)

- Goal: $G / \Gamma s$-step, $a \in G$ ergodic, Φ nil-character, $p \neq q$, then $\left(a^{p n} \Gamma, a^{q n} \Gamma\right)$ is equidistributed on some Y s.t. $\int_{Y}(\Phi \otimes \bar{\Phi}) d m_{Y}=0$.
- Not easy... Because Y can be very complicated.

Idea of proof of Step 2 (infinitary world-linear case)

- Goal: $G / \Gamma s$-step, $a \in G$ ergodic, Φ nil-character, $p \neq q$, then $\left(a^{p n} \Gamma, a^{q n} \Gamma\right)$ is equidistributed on some Y s.t. $\int_{Y}(\Phi \otimes \bar{\Phi}) d m_{Y}=0$.
- Not easy... Because Y can be very complicated.
- Idea: Show Y invariant under $v=\left(u^{p^{s}}, u^{q^{s}}\right)$ for $u \in G_{s}$.

Idea of proof of Step 2 (infinitary world-linear case)

- Goal: G / Γ s-step, $a \in G$ ergodic, Φ nil-character, $p \neq q$, then $\left(a^{p n} \Gamma, a^{q n} \Gamma\right)$ is equidistributed on some Y s.t. $\int_{Y}(\Phi \otimes \bar{\Phi}) d m_{Y}=0$.
- Not easy... Because Y can be very complicated.
- Idea: Show Y invariant under $v=\left(u^{p^{s}}, u^{q^{s}}\right)$ for $u \in G_{s}$. Then

$$
(\Phi \otimes \bar{\Phi})(v \cdot y)=c \cdot(\Phi \otimes \bar{\Phi})(y), c \neq 1 \Longrightarrow \int_{Y}(\Phi \otimes \bar{\Phi}) d m_{Y}=0
$$

Idea of proof of Step 2 (infinitary world-linear case)

- Goal: G / Γ s-step, $a \in G$ ergodic, Φ nil-character, $p \neq q$, then $\left(a^{p n} \Gamma, a^{q n} \Gamma\right)$ is equidistributed on some Y s.t. $\int_{Y}(\Phi \otimes \bar{\Phi}) d m_{Y}=0$.
- Not easy... Because Y can be very complicated.
- Idea: Show Y invariant under $v=\left(u^{p^{s}}, u^{q^{s}}\right)$ for $u \in G_{s}$. Then

$$
(\Phi \otimes \bar{\Phi})(v \cdot y)=c \cdot(\Phi \otimes \bar{\Phi})(y), c \neq 1 \Longrightarrow \int_{Y}(\Phi \otimes \bar{\Phi}) d m_{Y}=0
$$

- Idea: Use total ergodicity of a to show that if $Y=H / \Delta$, then

$$
\left(g^{p}, g^{q}\right) \in H \cdot\left(G_{2} \times G_{2}\right), \quad \text { for every } g \in G .
$$

Then take iterated commutators $(s-1)$-times.

Idea of proof of Step 2 (infinitary world-quadratic case)

- If $\left(a^{n} b^{n^{2}}\right)$ totally equidistributed in X and $\int_{X} \Phi d m_{X}=0$, then

$$
\frac{1}{N} \sum_{n=1}^{N} \chi(n) \Phi\left(a^{n} b^{n^{2}} \Gamma\right) \rightarrow 0 \quad \forall \chi \in \mathcal{M}
$$

Idea of proof of Step 2 (infinitary world-quadratic case)

- If $\left(a^{n} b^{n^{2}}\right)$ totally equidistributed in X and $\int_{X} \Phi d m_{X}=0$, then

$$
\frac{1}{N} \sum_{n=1}^{N} \chi(n) \Phi\left(a^{n} b^{n^{2}} \Gamma\right) \rightarrow 0 \quad \forall \chi \in \mathcal{M}
$$

- Can show: If $Y=H / \Delta$, then $\exists G^{1}, G^{2} \triangleleft H$ s.t. $G=G^{1} \cdot G^{2}$ and

$$
\left\{\left(g_{1}^{p} g_{2}^{p^{2}}, g_{1}^{q} g_{2}^{q^{2}}\right): g_{1} \in G^{1}, g_{2} \in G^{2}\right\} \subset H \cdot\left(G_{2} \times G_{2}\right)
$$

Idea of proof of Step 2 (infinitary world-quadratic case)

- If $\left(a^{n} b^{n^{2}}\right)$ totally equidistributed in X and $\int_{X} \Phi d m_{X}=0$, then

$$
\frac{1}{N} \sum_{n=1}^{N} \chi(n) \Phi\left(a^{n} b^{n^{2}} \Gamma\right) \rightarrow 0 \quad \forall \chi \in \mathcal{M}
$$

- Can show: If $Y=H / \Delta$, then $\exists G^{1}, G^{2} \triangleleft H$ s.t. $G=G^{1} \cdot G^{2}$ and

$$
\left\{\left(g_{1}^{p} g_{2}^{p^{2}}, g_{1}^{q} g_{2}^{q^{2}}\right): g_{1} \in G^{1}, g_{2} \in G^{2}\right\} \subset H \cdot\left(G_{2} \times G_{2}\right)
$$

- Taking iterated commutators ($s-1$)-times we get

$$
U=\left\{u \in G_{s}:\left(u^{p^{j}}, u^{q^{j}}\right) \in H \text { for some } j \in \mathbb{N}\right\} \text { generates } G_{s}
$$

Idea of proof of Step 2 (infinitary world-quadratic case)

- If $\left(a^{n} b^{n^{2}}\right)$ totally equidistributed in X and $\int_{X} \Phi d m_{X}=0$, then

$$
\frac{1}{N} \sum_{n=1}^{N} \chi(n) \Phi\left(a^{n} b^{n^{2}} \Gamma\right) \rightarrow 0 \quad \forall \chi \in \mathcal{M}
$$

- Can show: If $Y=H / \Delta$, then $\exists G^{1}, G^{2} \triangleleft H$ s.t. $G=G^{1} \cdot G^{2}$ and

$$
\left\{\left(g_{1}^{p} g_{2}^{p^{2}}, g_{1}^{q} g_{2}^{q^{2}}\right): g_{1} \in G^{1}, g_{2} \in G^{2}\right\} \subset H \cdot\left(G_{2} \times G_{2}\right)
$$

- Taking iterated commutators (s-1)-times we get

$$
U=\left\{u \in G_{s}:\left(u^{p^{j}}, u^{q^{j}}\right) \in H \text { for some } j \in \mathbb{N}\right\} \text { generates } G_{s}
$$

- This again suffices to show that

$$
\int_{Y}(\Phi \otimes \bar{\Phi}) d m_{Y}=0
$$

Chowla conjecture

Problem (Chowla's Conjecture)

If $P \in \mathbb{Z}[x, y]$ homogeneous, $P \neq c Q^{2}$ and $\lambda=$ Liouville, then

$$
\frac{1}{N^{2}} \sum_{1 \leq m, n \leq N} \lambda(P(m, n)) \rightarrow 0
$$

Chowla conjecture

Problem (Chowla's Conjecture)

If $P \in \mathbb{Z}[x, y]$ homogeneous, $P \neq c Q^{2}$ and $\lambda=$ Liouville, then

$$
\frac{1}{N^{2}} \sum_{1 \leq m, n \leq N} \lambda(P(m, n)) \rightarrow 0
$$

- Known when $\operatorname{deg}(P)=2$ (Landau 1918), $\operatorname{deg}(P)=3$ (Helfgott 2006), and when P factors linearly (Green, Tao, Ziegler 2012).

Chowla conjecture

Problem (Chowla's Conjecture)

If $P \in \mathbb{Z}[x, y]$ homogeneous, $P \neq c Q^{2}$ and $\lambda=$ Liouville, then

$$
\frac{1}{N^{2}} \sum_{1 \leq m, n \leq N} \lambda(P(m, n)) \rightarrow 0
$$

- Known when $\operatorname{deg}(P)=2$ (Landau 1918), $\operatorname{deg}(P)=3$ (Helfgott 2006), and when P factors linearly (Green, Tao, Ziegler 2012).

Theorem (F., Host 2014)

If χ averages to 0 on every infinite AP (for ex. the Liouville) and

$$
P(m, n)=\left(m^{2}+n^{2}\right)^{r} \prod_{i=1}^{s} L_{i}(m, n), \quad r \geq 0, s \in \mathbb{N},
$$

where L_{i} are pairwise independent linear forms, then

$$
\frac{1}{N^{2}} \sum_{1 \leq m, n \leq N} \chi(P(m, n)) \rightarrow 0
$$

Chowla conjecture: Idea of proof

- Idea: $m+i n \mapsto \chi\left(m^{2}+n^{2}\right)=\chi(\mathcal{N}(m+i n))$ is multiplicative, so we can apply Kátai's criterion for the Gaussian integers.

Chowla conjecture: Idea of proof

- Idea: $m+i n \mapsto \chi\left(m^{2}+n^{2}\right)=\chi(\mathcal{N}(m+i n))$ is multiplicative, so we can apply Kátai's criterion for the Gaussian integers.
- Reduce matters to showing

$$
\frac{1}{N^{2}} \sum_{1 \leq m, n \leq N} \chi(\tilde{P}(m, n)) \rightarrow 0
$$

where \tilde{P} is a product of $2 s$ linear forms that can be shown to be pairwise independent.

Chowla conjecture: Idea of proof

- Idea: $m+i n \mapsto \chi\left(m^{2}+n^{2}\right)=\chi(\mathcal{N}(m+i n))$ is multiplicative, so we can apply Kátai's criterion for the Gaussian integers.
- Reduce matters to showing

$$
\frac{1}{N^{2}} \sum_{1 \leq m, n \leq N} \chi(\tilde{P}(m, n)) \rightarrow 0
$$

where \tilde{P} is a product of $2 s$ linear forms that can be shown to be pairwise independent.

- Such averages are bounded by a multiple of $\|\chi\|_{U^{2 s-1}\left(\mathbb{Z}_{N}\right)}$.
- Assumption $+U^{2 s-1}$-structure theorem $\Longrightarrow\|\chi\|_{U^{2 s-1}\left(\mathbb{Z}_{N}\right)} \rightarrow 0$.

Further directions

Further directions

Problem

Extend the U^{s}-structure theorem to more general number fields.

Example

Prove a U^{s}-structure theorem for $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{2}]$.

Further directions

Problem

Extend the U^{s}-structure theorem to more general number fields.

Example

Prove a U^{s}-structure theorem for $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{2}]$. (W. Sun: $\mathbb{Z}[i] s=3 \sqrt{ }$)

Further directions

Problem

Extend the U^{s}-structure theorem to more general number fields.

Example

Prove a U^{s}-structure theorem for $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{2}] .(\mathrm{W}$. Sun: $\mathbb{Z}[i] s=3 \checkmark$)

Problem

Develop tools suitable for proving multiple recurrence for mps with multiplicative structure.

Example

$\left(X, \mathcal{X}, \mu, T_{n}\right) \mathrm{mps}, T_{m n}=T_{m} \circ T_{n}, \mu(A)>0$. Show $\exists m, n \in \mathbb{N}$ s.t.

$$
\mu\left(T_{m(m+n)}^{-1} A \cap T_{(m+2 n)(m+3 n)}^{-1} A \cap T_{(m+4 n)(m+5 n)}^{-1} A\right)>0
$$

Further directions

Problem

Extend the U^{s}-structure theorem to more general number fields.

Example

Prove a U^{s}-structure theorem for $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{2}]$. (W. Sun: $\mathbb{Z}[i] s=3 \sqrt{ }$)

Problem

Develop tools suitable for proving multiple recurrence for mps with multiplicative structure.

Example

$\left(X, \mathcal{X}, \mu, T_{n}\right) \mathrm{mps}, T_{m n}=T_{m} \circ T_{n}, \mu(A)>0$. Show $\exists m, n \in \mathbb{N}$ s.t.

$$
\mu\left(T_{m(m+n)}^{-1} A \cap T_{(m+2 n)(m+3 n)}^{-1} A \cap T_{(m+4 n)(m+5 n)}^{-1} A\right)>0
$$

