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Three interconnected topics

1 Structure theorem for multiplicative functions on the integers:

χ(n) = χst (n) + χun(n), χst periodic, χun uniform.

2 Partition regularity of quadratic equations:

9x2 + 16y2 = λ2.

3 Problems related to Chowla’s conjecture:

lim
N→∞

1
N2

∑
1≤m,n≤N

λ(P(m,n)) = 0.
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Partition regularity

Definition
P(x , y , z) = 0 is partition regular if on every finite partition of N the
equation is satisfied for some distinct x , y , z on the same cell.

Examples
x + y = z, (Schur 1916).
x + y = 2z, (van der Waerden 1927).
ax + by = cz, iff a = c, or b = c, or a + b = c (Rado 1933).

Problem
x2 + y2 = z2, (Erdös, 70’s).
x2 + y2 = 2z2, (Green, Gyarmati, Rusza).
ax2 + by2 = cz2, iff a = c, or b = c, or a + b = c.
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Weak partition regularity

Definition
P(x , y , λ) = 0 is weakly partition regular if on every finite partition of N
equation is satisfied for some distinct x , y on the same cell and λ ∈ N.

Examples

x − y = λ2, (Furstenberg, Sárközy, late 70’s).
x + y = λ2 (or 2λ2), (Khalfalah, Szemerédi 2006).

Problem
x2 + y2 = λ2.
x2 − y2 = λ2.
x2 + y2 = 2λ2.
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New partition regularity results

Theorem (F., Host 2014)
The following equation is weakly partition regular

9x2 + 16y2 = λ2.

More generally,
ax2 + by2 = λ2

is weakly partition regular if a,b, and a + b are squares.

Even more generally...

ax2 + by2 + cz2 + dxy + exz + fyz = 0

is w.p.r. if the following numbers are non-zero squares

e2 − 4ac, f 2 − 4bc, (e + f )2 − 4c(a + b + d).

We can also deal with some higher degree equations.
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Idea of proof for 9x2 + 16y2 = λ2

Solutions of 9x2 + 16y2 = λ2 in parametric form:

x = km(m + 3n), y = k(m + n)(m − 3n),

λ = k(5m2 + 9n2 + 6mn).

Density regularity: If dmult (E) > 0, then ∃k ,m,n ∈ N s.t.

km(m + 3n) and k(m + n)(m − 3n) ∈ E .

Ergodic reformulation: (X ,X , µ,Tn), Tmn = Tm ◦ Tn, µ(A) > 0,
then ∃m,n ∈ N s.t.

µ
(
T−1

m(m+3n)A ∩ T−1
(m+n)(m−3n)A

)
> 0.
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Idea of proof for 9x2 + 16y2 = λ2

Herglotz’s theorem on Q: There exists a positive measure ν on

M = {χ : N→ T : χ(mn) = χ(m)χ(n) for every m,n ∈ N}

such that for every r , s ∈ N

µ
(
T−1

r A ∩ T−1
s A

)
=

∫
M
χ(r) · χ(s) dν(χ).

Analytic reformulation: Under some assumptions on ν we have

lim inf
N→∞

∫
M

AN(χ) dν(χ) > 0, where

AN(χ) =
1

N2

∑
1≤m,n≤N

χ(m) · χ(m + 3n) · χ(m + n) · χ(m − 3n).

Key tool: A structural result for multiplicative functions.
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Multiplicative functions

Definition

M = {χ : N→ U : χ(mn) = χ(m)χ(n) whenever (m,n) = 1}

Examples

The Liouville function, λ(n) = (−1)|prime factors of n| (uniform).

The Möbius function (uniform).

χ(n) = nit (average on [1,N] is ∼ N it/(1 + it)).

Dirichlet characters (periodic).

χ(2) = −1, χ(p) = 1 for p 6= 2 (non-uniform and non-periodic).
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Structure theorem for multiplicative functions

Theorem (F., Host 2014)

For every ε > 0, s ∈ N, there exist q ∈ N, C > 0, such that for every
χ ∈M and N ∈ N, there exist χst , χun bounded by 2 such that

1 χ(n) = χst (n) + χun(n), n = 1, . . . ,N;

2 |χst (n + q)− χst (n)| ≤ C
N , n = 1, . . . ,N;

3 ‖χun‖Us(ZN)
≤ ε.

The constants q,C do not depend on N or on χ.

Applies to arbitrary bounded multiplicative functions, not just the
Liouville or the Möbius (a case dealt by Green, Tao, Ziegler).

χst = χ ∗ ψ where ψ is a kernel with close to "rational" spectrum.

Nikos Frantzikinakis (U. of Crete) Multiplicative functions and applications Bonn, July 2014 9 / 17



Structure theorem for multiplicative functions

Theorem (F., Host 2014)
For every ε > 0, s ∈ N, there exist q ∈ N, C > 0, such that for every
χ ∈M and N ∈ N, there exist χst , χun bounded by 2 such that

1 χ(n) = χst (n) + χun(n), n = 1, . . . ,N;

2 |χst (n + q)− χst (n)| ≤ C
N , n = 1, . . . ,N;

3 ‖χun‖Us(ZN)
≤ ε.

The constants q,C do not depend on N or on χ.

Applies to arbitrary bounded multiplicative functions, not just the
Liouville or the Möbius (a case dealt by Green, Tao, Ziegler).

χst = χ ∗ ψ where ψ is a kernel with close to "rational" spectrum.

Nikos Frantzikinakis (U. of Crete) Multiplicative functions and applications Bonn, July 2014 9 / 17



Structure theorem for multiplicative functions

Theorem (F., Host 2014)
For every ε > 0, s ∈ N, there exist q ∈ N, C > 0, such that for every
χ ∈M and N ∈ N, there exist χst , χun bounded by 2 such that

1 χ(n) = χst (n) + χun(n), n = 1, . . . ,N;

2 |χst (n + q)− χst (n)| ≤ C
N , n = 1, . . . ,N;

3 ‖χun‖Us(ZN)
≤ ε.

The constants q,C do not depend on N or on χ.

Applies to arbitrary bounded multiplicative functions, not just the
Liouville or the Möbius (a case dealt by Green, Tao, Ziegler).

χst = χ ∗ ψ where ψ is a kernel with close to "rational" spectrum.

Nikos Frantzikinakis (U. of Crete) Multiplicative functions and applications Bonn, July 2014 9 / 17



Structure theorem for multiplicative functions

Theorem (F., Host 2014)
For every ε > 0, s ∈ N, there exist q ∈ N, C > 0, such that for every
χ ∈M and N ∈ N, there exist χst , χun bounded by 2 such that

1 χ(n) = χst (n) + χun(n), n = 1, . . . ,N;

2 |χst (n + q)− χst (n)| ≤ C
N , n = 1, . . . ,N;

3 ‖χun‖Us(ZN)
≤ ε.

The constants q,C do not depend on N or on χ.

Applies to arbitrary bounded multiplicative functions, not just the
Liouville or the Möbius (a case dealt by Green, Tao, Ziegler).

χst = χ ∗ ψ where ψ is a kernel with close to "rational" spectrum.

Nikos Frantzikinakis (U. of Crete) Multiplicative functions and applications Bonn, July 2014 9 / 17



Structure theorem for multiplicative functions

Theorem (F., Host 2014)
For every ε > 0, s ∈ N, there exist q ∈ N, C > 0, such that for every
χ ∈M and N ∈ N, there exist χst , χun bounded by 2 such that

1 χ(n) = χst (n) + χun(n), n = 1, . . . ,N;

2 |χst (n + q)− χst (n)| ≤ C
N , n = 1, . . . ,N;

3 ‖χun‖Us(ZN)
≤ ε.

The constants q,C do not depend on N or on χ.

Applies to arbitrary bounded multiplicative functions, not just the
Liouville or the Möbius (a case dealt by Green, Tao, Ziegler).

χst = χ ∗ ψ where ψ is a kernel with close to "rational" spectrum.

Nikos Frantzikinakis (U. of Crete) Multiplicative functions and applications Bonn, July 2014 9 / 17



Structure theorem for multiplicative functions

Theorem (F., Host 2014)
For every ε > 0, s ∈ N, there exist q ∈ N, C > 0, such that for every
χ ∈M and N ∈ N, there exist χst , χun bounded by 2 such that

1 χ(n) = χst (n) + χun(n), n = 1, . . . ,N;

2 |χst (n + q)− χst (n)| ≤ C
N , n = 1, . . . ,N;

3 ‖χun‖Us(ZN)
≤ ε.

The constants q,C do not depend on N or on χ.

Applies to arbitrary bounded multiplicative functions, not just the
Liouville or the Möbius (a case dealt by Green, Tao, Ziegler).

χst = χ ∗ ψ where ψ is a kernel with close to "rational" spectrum.

Nikos Frantzikinakis (U. of Crete) Multiplicative functions and applications Bonn, July 2014 9 / 17



Structure theorem for multiplicative functions

Theorem (F., Host 2014)
For every ε > 0, s ∈ N, there exist q ∈ N, C > 0, such that for every
χ ∈M and N ∈ N, there exist χst , χun bounded by 2 such that

1 χ(n) = χst (n) + χun(n), n = 1, . . . ,N;

2 |χst (n + q)− χst (n)| ≤ C
N , n = 1, . . . ,N;

3 ‖χun‖Us(ZN)
≤ ε.

The constants q,C do not depend on N or on χ.

Applies to arbitrary bounded multiplicative functions, not just the
Liouville or the Möbius (a case dealt by Green, Tao, Ziegler).

χst = χ ∗ ψ where ψ is a kernel with close to "rational" spectrum.

Nikos Frantzikinakis (U. of Crete) Multiplicative functions and applications Bonn, July 2014 9 / 17



Uniformity of multiplicative functions

Definition
A multiplicative function is aperiodic if

lim
N→∞

1
N

N∑
n=1

χ(an + b) = 0 for every a,b ∈ N.

If χ(p) ∈ [−1,1− δ] for some δ > 0 for all primes p, then χ is aperiodic
(follows from Halász (1968)).

Theorem
For a bounded multiplicative function the following are equivalent:

χ is aperiodic;
limN→∞ ‖χ‖U2(ZN)

= 0;

limN→∞ ‖χ‖Us(ZN)
= 0 for every s ∈ N.
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Proof of structure theorem: Main steps

1 Inverse theorem (Green, Tao, Ziegler): If ‖χ‖Us(ZN)
≥ ε, then

∣∣∣ 1
N

N∑
n=1

χ(n)f (n)
∣∣∣ ≥ δ(ε, s), (1)

where (f (n)) is a (s − 1)-step nilsequence of bdd complexity.

2 (1)+ Multiplicativity =⇒ χ correlates with a "rational" phase:∣∣∣ 1
N

N∑
n=1

χ(n)e2πin· ξN
∣∣∣ ≥ δ′(ε, s), where

∣∣∣ ξ
N
− p

q

∣∣∣ ≤ C
N
. (2)

There are only Oε,s(1) such ξ.
3 φ kernel with spectrum supported on "bad" frequences (2), then

‖χ− χst‖Us(ZN)
≤ ε, where χst = χ ∗ φ;

χ = χst + χun, where χun = χ− χst .
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Idea of proof of Step 2 (infinitary world-linear case)

Suffices to show orthogonality to irrational nilsequences.

X = G/Γ nilmanifold, a ∈ G totally ergodic,
∫

X ΦdmX = 0, then

1
N

N∑
n=1

χ(n)Φ(anΓ)→ 0, ∀χ ∈M.

Furthermore, can assume that Φ ∈ C(X ) is a "nil-character":

Kátai’s orthogonality criterion (1984): For χ ∈M we have

1
N

N∑
n=1

f (pn)f (qn)→ 0, ∀p 6= q ∈ N =⇒ 1
N

N∑
n=1

χ(n)f (n)→ 0.

New Goal: G/Γ s-step, a ∈ G ergodic, Φ nil-character, p 6= q, then

1
N

N∑
n=1

Φ(apnΓ) · Φ(aqnΓ)→ 0.
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Idea of proof of Step 2 (infinitary world-linear case)

Goal: G/Γ s-step, a ∈ G ergodic, Φ nil-character, p 6= q, then

(apnΓ,aqnΓ) is equidistributed on some Y s.t.
∫

Y
(Φ⊗ Φ)dmY = 0.

Not easy... Because Y can be very complicated.
Idea: Show Y invariant under v = (ups

,uqs
) for u ∈ Gs. Then

(Φ⊗ Φ)(v · y) = c · (Φ⊗ Φ)(y), c 6= 1 =⇒
∫

Y
(Φ⊗ Φ)dmY = 0.

Idea: Use total ergodicity of a to show that if Y = H/∆, then

(gp,gq) ∈ H · (G2 ×G2), for every g ∈ G.

Then take iterated commutators (s − 1)-times.
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Idea of proof of Step 2 (infinitary world-quadratic case)

If (anbn2
) totally equidistributed in X and

∫
X ΦdmX = 0, then

1
N

N∑
n=1

χ(n)Φ(anbn2
Γ)→ 0 ∀χ ∈M.

Can show: If Y = H/∆, then ∃G1,G2 / H s.t. G = G1 ·G2 and

{(gp
1gp2

2 ,gq
1 gq2

2 ) : g1 ∈ G1,g2 ∈ G2} ⊂ H · (G2 ×G2).

Taking iterated commutators (s − 1)-times we get

U = {u ∈ Gs : (upj
,uqj

) ∈ H for some j ∈ N} generates Gs.

This again suffices to show that∫
Y

(Φ⊗ Φ)dmY = 0.
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Chowla conjecture

Problem (Chowla’s Conjecture)

If P ∈ Z[x , y ] homogeneous, P 6= cQ2 and λ =Liouville, then

1
N2

∑
1≤m,n≤N

λ(P(m,n))→ 0.

Known when deg(P) = 2 (Landau 1918), deg(P) = 3 (Helfgott
2006), and when P factors linearly (Green, Tao, Ziegler 2012).

Theorem (F., Host 2014)
If χ averages to 0 on every infinite AP (for ex. the Liouville) and

P(m,n) = (m2 + n2)r ∏s
i=1 Li(m,n), r ≥ 0, s ∈ N,

where Li are pairwise independent linear forms, then
1

N2

∑
1≤m,n≤N χ(P(m,n))→ 0.
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Chowla conjecture: Idea of proof

Idea: m + in 7→ χ(m2 + n2) = χ(N (m + in)) is multiplicative, so we
can apply Kátai’s criterion for the Gaussian integers.

Reduce matters to showing

1
N2

∑
1≤m,n≤N

χ(P̃(m,n))→ 0

where P̃ is a product of 2s linear forms that can be shown to be
pairwise independent.

Such averages are bounded by a multiple of ‖χ‖U2s−1(ZN)
.

Assumption + U2s−1-structure theorem =⇒ ‖χ‖U2s−1(ZN)
→ 0.
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Further directions

Problem
Extend the Us-structure theorem to more general number fields.

Example

Prove a Us-structure theorem for Z[i] and Z[
√

2]. (W. Sun: Z[i] s = 3X)

Problem
Develop tools suitable for proving multiple recurrence for mps with
multiplicative structure.

Example
(X ,X , µ,Tn) mps, Tmn = Tm ◦ Tn, µ(A) > 0. Show ∃m,n ∈ N s.t.

µ
(
T−1

m(m+n)A ∩ T−1
(m+2n)(m+3n)A ∩ T−1

(m+4n)(m+5n)A
)
> 0.

THANK YOU!
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