A structure theorem for multiplicative functions and applications (joint work with Bernard Host)

Nikos Frantzikinakis

University of Crete, Greece

Bonn, July 2014

Structure theorem for multiplicative functions on the integers:

 $\chi(n) = \chi_{st}(n) + \chi_{un}(n), \ \chi_{st}$ periodic, χ_{un} uniform.

Structure theorem for multiplicative functions on the integers:

 $\chi(n) = \chi_{st}(n) + \chi_{un}(n), \ \chi_{st}$ periodic, χ_{un} uniform.

Partition regularity of quadratic equations:

 $9x^2 + 16y^2 = \lambda^2.$

Structure theorem for multiplicative functions on the integers:

 $\chi(n) = \chi_{st}(n) + \chi_{un}(n), \ \chi_{st}$ periodic, χ_{un} uniform.

Partition regularity of quadratic equations:

 $9x^2 + 16y^2 = \lambda^2.$

Problems related to Chowla's conjecture:

$$\lim_{N\to\infty}\frac{1}{N^2}\sum_{1\leq m,n\leq N}\lambda(P(m,n))=0.$$

Partition regularity

Definition

P(x, y, z) = 0 is *partition regular* if on every finite partition of \mathbb{N} the equation is satisfied for some distinct *x*, *y*, *z* on the same cell.

Partition regularity

Definition

P(x, y, z) = 0 is *partition regular* if on every finite partition of \mathbb{N} the equation is satisfied for some distinct *x*, *y*, *z* on the same cell.

Examples

• x + y = z, (Schur 1916).

P(x, y, z) = 0 is *partition regular* if on every finite partition of \mathbb{N} the equation is satisfied for some distinct *x*, *y*, *z* on the same cell.

Examples

- x + y = z, (Schur 1916).
- x + y = 2z, (van der Waerden 1927).

P(x, y, z) = 0 is *partition regular* if on every finite partition of \mathbb{N} the equation is satisfied for some distinct *x*, *y*, *z* on the same cell.

Examples

- x + y = z, (Schur 1916).
- x + y = 2z, (van der Waerden 1927).
- ax + by = cz, iff a = c, or b = c, or a + b = c (Rado 1933).

P(x, y, z) = 0 is *partition regular* if on every finite partition of \mathbb{N} the equation is satisfied for some distinct *x*, *y*, *z* on the same cell.

Examples

- x + y = z, (Schur 1916).
- x + y = 2z, (van der Waerden 1927).
- ax + by = cz, iff a = c, or b = c, or a + b = c (Rado 1933).

Problem

 $P(x, y, \lambda) = 0$ is *weakly partition regular* if on every finite partition of \mathbb{N} equation is satisfied for some distinct *x*, *y* on the same cell and $\lambda \in \mathbb{N}$.

 $P(x, y, \lambda) = 0$ is *weakly partition regular* if on every finite partition of \mathbb{N} equation is satisfied for some distinct *x*, *y* on the same cell and $\lambda \in \mathbb{N}$.

Examples

x - y = λ², (Furstenberg, Sárközy, late 70's).
x + y = λ² (or 2λ²), (Khalfalah, Szemerédi 2006).

 $P(x, y, \lambda) = 0$ is *weakly partition regular* if on every finite partition of \mathbb{N} equation is satisfied for some distinct *x*, *y* on the same cell and $\lambda \in \mathbb{N}$.

Examples

•
$$x - y = \lambda^2$$
, (Furstenberg, Sárközy, late 70's).
• $x + y = \lambda^2$ (or $2\lambda^2$), (Khalfalah, Szemerédi 2006).

Problem

•
$$x^2 + y^2 = \lambda^2$$
.
• $x^2 - y^2 = \lambda^2$.

•
$$x^2 + y^2 = 2\lambda^2$$
.

The following equation is weakly partition regular

 $9x^2 + 16y^2 = \lambda^2.$

The following equation is weakly partition regular

 $9x^2 + 16y^2 = \lambda^2.$

More generally,

$$ax^2 + by^2 = \lambda^2$$

is weakly partition regular if a, b, and a + b are squares.

The following equation is weakly partition regular

 $9x^2 + 16y^2 = \lambda^2.$

More generally,

$$ax^2 + by^2 = \lambda^2$$

is weakly partition regular if a, b, and a + b are squares.

Even more generally...

$$ax^2 + by^2 + cz^2 + dxy + exz + fyz = 0$$

is w.p.r. if the following numbers are non-zero squares

The following equation is weakly partition regular

 $9x^2 + 16y^2 = \lambda^2.$

More generally,

$$ax^2 + by^2 = \lambda^2$$

is weakly partition regular if a, b, and a + b are squares.

Even more generally...

$$ax^2 + by^2 + cz^2 + dxy + exz + fyz = 0$$

is w.p.r. if the following numbers are non-zero squares

$$e^2 - 4ac$$
, $f^2 - 4bc$, $(e + f)^2 - 4c(a + b + d)$.

We can also deal with some higher degree equations.

Nikos Frantzikinakis (U. of Crete)

• Solutions of $9x^2 + 16y^2 = \lambda^2$ in parametric form:

x = km(m+3n), y = k(m+n)(m-3n), $\lambda = k(5m^2 + 9n^2 + 6mn).$

• Solutions of $9x^2 + 16y^2 = \lambda^2$ in parametric form:

$$x = km(m+3n), y = k(m+n)(m-3n),$$

 $\lambda = k(5m^2 + 9n^2 + 6mn).$

• Density regularity: If $d_{mult}(E) > 0$, then $\exists k, m, n \in \mathbb{N}$ s.t. km(m+3n) and $k(m+n)(m-3n) \in E$.

• Solutions of $9x^2 + 16y^2 = \lambda^2$ in parametric form:

$$x = km(m+3n), y = k(m+n)(m-3n),$$

 $\lambda = k(5m^2 + 9n^2 + 6mn).$

- Density regularity: If $d_{mult}(E) > 0$, then $\exists k, m, n \in \mathbb{N}$ s.t. km(m+3n) and $k(m+n)(m-3n) \in E$.
- Ergodic reformulation: $(X, \mathcal{X}, \mu, T_n)$, $T_{mn} = T_m \circ T_n$, $\mu(A) > 0$, then $\exists m, n \in \mathbb{N}$ s.t.

$$\mu(T_{m(m+3n)}^{-1}A\cap T_{(m+n)(m-3n)}^{-1}A)>0.$$

Herglotz's theorem on Q: There exists a positive measure v on

 $\mathcal{M} = \{ \chi \colon \mathbb{N} \to \mathbb{T} \colon \chi(mn) = \chi(m)\chi(n) \text{ for every } m, n \in \mathbb{N} \}$

such that for every $r, s \in \mathbb{N}$

$$\mu(T_r^{-1}A\cap T_s^{-1}A) = \int_{\mathcal{M}} \chi(r) \cdot \overline{\chi}(s) \ d\nu(\chi).$$

• Herglotz's theorem on Q: There exists a positive measure ν on

 $\mathcal{M} = \{ \chi \colon \mathbb{N} \to \mathbb{T} \colon \chi(mn) = \chi(m)\chi(n) \text{ for every } m, n \in \mathbb{N} \}$

such that for every $r, s \in \mathbb{N}$

$$\mu(T_r^{-1}A\cap T_s^{-1}A) = \int_{\mathcal{M}} \chi(r) \cdot \overline{\chi}(s) \ d\nu(\chi).$$

Analytic reformulation: Under some assumptions on ν we have

$$\liminf_{N\to\infty}\int_{\mathcal{M}} A_N(\chi) \ d\nu(\chi)>0, \quad \text{where}$$

$$A_N(\chi) = \frac{1}{N^2} \sum_{1 \le m,n \le N} \chi(m) \cdot \chi(m+3n) \cdot \overline{\chi}(m+n) \cdot \overline{\chi}(m-3n).$$

• Key tool: A structural result for multiplicative functions.

$$\mathcal{M} = \{ \chi \colon \mathbb{N} \to \mathbb{U} \colon \chi(mn) = \chi(m)\chi(n) \text{ whenever } (m,n) = 1 \}$$

 $\mathcal{M} = \{ \chi \colon \mathbb{N} \to \mathbb{U} \colon \chi(\textit{mn}) = \chi(\textit{m})\chi(\textit{n}) \text{ whenever } (\textit{m},\textit{n}) = 1 \}$

Examples

- The Liouville function, $\lambda(n) = (-1)^{|\text{prime factors of } n|}$ (uniform).
- The Möbius function (uniform).

 $\mathcal{M} = \{ \chi \colon \mathbb{N} \to \mathbb{U} \colon \chi(\textit{mn}) = \chi(\textit{m})\chi(\textit{n}) \text{ whenever } (\textit{m},\textit{n}) = 1 \}$

Examples

- The Liouville function, $\lambda(n) = (-1)^{|\text{prime factors of } n|}$ (uniform).
- The Möbius function (uniform).
- $\chi(n) = n^{it}$ (average on [1, N] is $\sim N^{it}/(1 + it)$).

 $\mathcal{M} = \{ \chi \colon \mathbb{N} \to \mathbb{U} \colon \chi(\textit{mn}) = \chi(\textit{m})\chi(\textit{n}) \text{ whenever } (\textit{m},\textit{n}) = 1 \}$

Examples

- The Liouville function, $\lambda(n) = (-1)^{|\text{prime factors of } n|}$ (uniform).
- The Möbius function (uniform).
- $\chi(n) = n^{it}$ (average on [1, N] is $\sim N^{it}/(1 + it)$).
- Dirichlet characters (periodic).

• $\chi(2) = -1$, $\chi(p) = 1$ for $p \neq 2$ (non-uniform and non-periodic).

Structure theorem for multiplicative functions

Theorem (F., Host 2014)

For every $\varepsilon > 0$, $s \in \mathbb{N}$, there exist $q \in \mathbb{N}$, C > 0, such that for every $\chi \in \mathcal{M}$ and $N \in \mathbb{N}$, there exist χ_{st}, χ_{un} bounded by 2 such that $\chi(n) = \chi_{st}(n) + \chi_{un}(n), \quad n = 1, ..., N;$

- **1** $\chi(n) = \chi_{st}(n) + \chi_{un}(n), \quad n = 1, ..., N;$
- $(2) |\chi_{st}(n+q)-\chi_{st}(n)| \leq \frac{C}{N}, \quad n=1,\ldots,N;$

- $\chi(n) = \chi_{st}(n) + \chi_{un}(n), \quad n = 1, ..., N;$
- $(2) |\chi_{st}(n+q)-\chi_{st}(n)| \leq \frac{C}{N}, \quad n=1,\ldots,N;$
- $\|\chi_{un}\|_{U^{s}(\mathbb{Z}_{N})} \leq \varepsilon.$

- $\chi(n) = \chi_{st}(n) + \chi_{un}(n), \quad n = 1, ..., N;$
- $(2) |\chi_{st}(n+q)-\chi_{st}(n)| \leq \frac{C}{N}, \quad n=1,\ldots,N;$
- $\|\chi_{un}\|_{U^{s}(\mathbb{Z}_{N})} \leq \varepsilon.$
 - The constants q, C do not depend on N or on χ .

- $\chi(n) = \chi_{st}(n) + \chi_{un}(n), \quad n = 1, ..., N;$
- $(2) |\chi_{st}(n+q)-\chi_{st}(n)| \leq \frac{C}{N}, \quad n=1,\ldots,N;$
- $\|\chi_{un}\|_{U^{s}(\mathbb{Z}_{N})} \leq \varepsilon.$
 - The constants q, C do not depend on N or on χ .
 - Applies to arbitrary bounded multiplicative functions, not just the Liouville or the Möbius (a case dealt by Green, Tao, Ziegler).

For every $\varepsilon > 0, s \in \mathbb{N}$, there exist $q \in \mathbb{N}$, C > 0, such that for every $\chi \in \mathcal{M}$ and $N \in \mathbb{N}$, there exist χ_{st}, χ_{un} bounded by 2 such that

- $\chi(n) = \chi_{st}(n) + \chi_{un}(n), \quad n = 1, ..., N;$
- $(2) |\chi_{st}(n+q)-\chi_{st}(n)| \leq \frac{C}{N}, \quad n=1,\ldots,N;$

 $\|\chi_{un}\|_{U^{s}(\mathbb{Z}_{N})} \leq \varepsilon.$

- The constants q, C do not depend on N or on χ .
- Applies to arbitrary bounded multiplicative functions, not just the Liouville or the Möbius (a case dealt by Green, Tao, Ziegler).
- $\chi_{st} = \chi * \psi$ where ψ is a kernel with close to "rational" spectrum.

Uniformity of multiplicative functions

Uniformity of multiplicative functions

Definition

A multiplicative function is aperiodic if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\chi(\textit{an}+\textit{b})=0 \ \text{ for every }\textit{a},\textit{b}\in\mathbb{N}.$$

Uniformity of multiplicative functions

Definition

A multiplicative function is aperiodic if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\chi(\textit{an}+\textit{b})=0 \text{ for every }\textit{a},\textit{b}\in\mathbb{N}.$$

If $\chi(p) \in [-1, 1 - \delta]$ for some $\delta > 0$ for all primes *p*, then χ is aperiodic (follows from Halász (1968)).

Uniformity of multiplicative functions

Definition

A multiplicative function is aperiodic if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\chi(an+b)=0 \text{ for every } a,b\in\mathbb{N}.$$

If $\chi(p) \in [-1, 1 - \delta]$ for some $\delta > 0$ for all primes p, then χ is aperiodic (follows from Halász (1968)).

Theorem

For a bounded multiplicative function the following are equivalent:

• χ is aperiodic;

•
$$\lim_{N \to \infty} \|\chi\|_{U^2(\mathbb{Z}_N)} = 0;$$

• $\lim_{N\to\infty} \|\chi\|_{U^s(\mathbb{Z}_N)} = 0$ for every $s \in \mathbb{N}$.

Uniformity of multiplicative functions

Definition

A multiplicative function is aperiodic if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\chi(an+b)=0 \text{ for every } a,b\in\mathbb{N}.$$

If $\chi(p) \in [-1, 1 - \delta]$ for some $\delta > 0$ for all primes p, then χ is aperiodic (follows from Halász (1968)).

Theorem

For a bounded multiplicative function the following are equivalent:

• χ is aperiodic;

•
$$\lim_{N \to \infty} \|\chi\|_{U^2(\mathbb{Z}_N)} = 0;$$

• $\lim_{N\to\infty} \|\chi\|_{U^s(\mathbb{Z}_N)} = 0$ for every $s \in \mathbb{N}$.

1 Inverse theorem (Green, Tao, Ziegler): If $\|\chi\|_{U^s(\mathbb{Z}_N)} \ge \varepsilon$, then

$$\left|\frac{1}{N}\sum_{n=1}^{N}\chi(n)f(n)\right| \geq \delta(\varepsilon, s),\tag{1}$$

where (f(n)) is a (s-1)-step nilsequence of bdd complexity.

1 Inverse theorem (Green, Tao, Ziegler): If $\|\chi\|_{U^s(\mathbb{Z}_N)} \ge \varepsilon$, then

$$\left|\frac{1}{N}\sum_{n=1}^{N}\chi(n)f(n)\right| \geq \delta(\varepsilon, s),\tag{1}$$

where (f(n)) is a (s-1)-step nilsequence of bdd complexity.

2 (1)+ Multiplicativity $\implies \chi$ correlates with a "rational" phase:

Inverse theorem (Green, Tao, Ziegler): If $\|\chi\|_{U^s(\mathbb{Z}_N)} \ge \varepsilon$, then

$$\left|\frac{1}{N}\sum_{n=1}^{N}\chi(n)f(n)\right| \geq \delta(\varepsilon, s),\tag{1}$$

where (f(n)) is a (s-1)-step nilsequence of bdd complexity.

2 (1)+ Multiplicativity $\implies \chi$ correlates with a "rational" phase:

$$\left|\frac{1}{N}\sum_{n=1}^{N}\chi(n)e^{2\pi i n\cdot\frac{\xi}{N}}\right| \geq \delta'(\varepsilon,s), \text{ where } \left|\frac{\xi}{N}-\frac{p}{q}\right| \leq \frac{C}{N}.$$
 (2)

There are only $O_{\varepsilon,s}(1)$ such ξ .

Inverse theorem (Green, Tao, Ziegler): If $\|\chi\|_{U^s(\mathbb{Z}_N)} \ge \varepsilon$, then

$$\left|\frac{1}{N}\sum_{n=1}^{N}\chi(n)f(n)\right| \geq \delta(\varepsilon, s),\tag{1}$$

where (f(n)) is a (s-1)-step nilsequence of bdd complexity.

2 (1)+ Multiplicativity $\implies \chi$ correlates with a "rational" phase:

$$\left|\frac{1}{N}\sum_{n=1}^{N}\chi(n)e^{2\pi i n\cdot\frac{\xi}{N}}\right| \geq \delta'(\varepsilon, s), \text{ where } \left|\frac{\xi}{N}-\frac{p}{q}\right| \leq \frac{C}{N}.$$
 (2)

There are only $O_{\varepsilon,s}(1)$ such ξ .

 \bullet ϕ kernel with spectrum supported on "bad" frequences (2), then

$$\|\chi - \chi_{st}\|_{U^{s}(\mathbb{Z}_{N})} \leq \varepsilon$$
, where $\chi_{st} = \chi * \phi$;

 $\chi = \chi_{st} + \chi_{un}$, where $\chi_{un} = \chi - \chi_{st}$.

• Suffices to show orthogonality to irrational nilsequences.

• Suffices to show orthogonality to irrational nilsequences. $X = G/\Gamma$ nilmanifold, $a \in G$ totally ergodic, $\int_X \Phi dm_X = 0$, then

$$\frac{1}{N}\sum_{n=1}^{N}\chi(n)\Phi(a^{n}\Gamma)\to 0, \qquad \forall \chi\in\mathcal{M}.$$

Furthermore, can assume that $\Phi \in C(X)$ is a *"nil-character"*:

• Suffices to show orthogonality to irrational nilsequences. $X = G/\Gamma$ nilmanifold, $a \in G$ totally ergodic, $\int_X \Phi dm_X = 0$, then

$$\frac{1}{N}\sum_{n=1}^{N}\chi(n)\Phi(a^{n}\Gamma)\to 0,\qquad \forall \chi\in\mathcal{M}.$$

Furthermore, can assume that $\Phi \in C(X)$ is a "*nil-character*":

• Kátai's orthogonality criterion (1984): For $\chi \in \mathcal{M}$ we have

$$\frac{1}{N}\sum_{n=1}^{N}f(pn)\overline{f}(qn)\to 0,\;\forall p\neq q\in\mathbb{N}\implies \frac{1}{N}\sum_{n=1}^{N}\chi(n)f(n)\to 0.$$

• Suffices to show orthogonality to irrational nilsequences. $X = G/\Gamma$ nilmanifold, $a \in G$ totally ergodic, $\int_X \Phi dm_X = 0$, then

$$\frac{1}{N}\sum_{n=1}^{N}\chi(n)\Phi(a^{n}\Gamma)\to 0,\qquad \forall \chi\in\mathcal{M}.$$

Furthermore, can assume that $\Phi \in C(X)$ is a *"nil-character":*

• Kátai's orthogonality criterion (1984): For $\chi \in \mathcal{M}$ we have

$$\frac{1}{N}\sum_{n=1}^{N}f(pn)\overline{f}(qn)\to 0, \ \forall p\neq q\in\mathbb{N}\implies \frac{1}{N}\sum_{n=1}^{N}\chi(n)f(n)\to 0.$$

• New Goal: G/Γ s-step, $a \in G$ ergodic, Φ nil-character, $p \neq q$, then

$$\frac{1}{N}\sum_{n=1}^{N}\Phi(a^{pn}\Gamma)\cdot\overline{\Phi}(a^{qn}\Gamma)\rightarrow 0.$$

• Goal: G/Γ s-step, $a \in G$ ergodic, Φ nil-character, $p \neq q$, then

 $(a^{pn}\Gamma, a^{qn}\Gamma)$ is equidistributed on some Y s.t. $\int_{Y} (\Phi \otimes \overline{\Phi}) dm_{Y} = 0.$

• Goal: G/Γ s-step, $a \in G$ ergodic, Φ nil-character, $p \neq q$, then

 $(a^{pn}\Gamma, a^{qn}\Gamma)$ is equidistributed on some Y s.t. $\int_{Y} (\Phi \otimes \overline{\Phi}) dm_{Y} = 0.$

• Not easy... Because Y can be very complicated.

• Goal: G/Γ s-step, $a \in G$ ergodic, Φ nil-character, $p \neq q$, then

 $(a^{pn}\Gamma, a^{qn}\Gamma)$ is equidistributed on some Y s.t. $\int_{Y} (\Phi \otimes \overline{\Phi}) dm_{Y} = 0.$

- Not easy... Because Y can be very complicated.
- Idea: Show Y invariant under $v = (u^{p^s}, u^{q^s})$ for $u \in G_s$.

• Goal: G/Γ s-step, $a \in G$ ergodic, Φ nil-character, $p \neq q$, then

 $(a^{pn}\Gamma, a^{qn}\Gamma)$ is equidistributed on some Y s.t. $\int_{Y} (\Phi \otimes \overline{\Phi}) dm_{Y} = 0.$

- Not easy... Because Y can be very complicated.
- Idea: Show Y invariant under $v = (u^{p^s}, u^{q^s})$ for $u \in G_s$. Then

 $(\Phi \otimes \overline{\Phi})(v \cdot y) = c \cdot (\Phi \otimes \overline{\Phi})(y), \ c \neq 1 \implies \int_{Y} (\Phi \otimes \overline{\Phi}) dm_{Y} = 0.$

• Goal: G/Γ s-step, $a \in G$ ergodic, Φ nil-character, $p \neq q$, then

 $(a^{pn}\Gamma, a^{qn}\Gamma)$ is equidistributed on some Y s.t. $\int_{Y} (\Phi \otimes \overline{\Phi}) dm_{Y} = 0.$

- Not easy... Because Y can be very complicated.
- Idea: Show Y invariant under $v = (u^{p^s}, u^{q^s})$ for $u \in G_s$. Then

$$(\Phi \otimes \overline{\Phi})(v \cdot y) = c \cdot (\Phi \otimes \overline{\Phi})(y), \ c \neq 1 \implies \int_{Y} (\Phi \otimes \overline{\Phi}) dm_{Y} = 0.$$

• Idea: Use total ergodicity of *a* to show that if $Y = H/\Delta$, then

 $(g^{
ho},g^{q})\in H\cdot (G_{2} imes G_{2}), \hspace{0.3cm} ext{ for every } g\in G.$

Then take iterated commutators (s - 1)-times.

• If $(a^n b^{n^2})$ totally equidistributed in X and $\int_X \Phi dm_X = 0$, then

$$\frac{1}{N}\sum_{n=1}^{N}\chi(n)\Phi(a^{n}b^{n^{2}}\Gamma)\to 0 \qquad \forall \chi\in\mathcal{M}.$$

• If $(a^n b^{n^2})$ totally equidistributed in X and $\int_X \Phi dm_X = 0$, then

$$\frac{1}{N}\sum_{n=1}^{N}\chi(n)\Phi(a^{n}b^{n^{2}}\Gamma)\to 0 \qquad \forall \chi\in\mathcal{M}.$$

• Can show: If $Y = H/\Delta$, then $\exists G^1, G^2 \triangleleft H$ s.t. $G = G^1 \cdot G^2$ and

 $\{(g_1^p g_2^{p^2}, g_1^q g_2^{q^2}) \colon g_1 \in G^1, g_2 \in G^2\} \subset H \cdot (G_2 \times G_2).$

• If $(a^n b^{n^2})$ totally equidistributed in X and $\int_X \Phi dm_X = 0$, then

$$\frac{1}{N}\sum_{n=1}^{N}\chi(n)\Phi(a^{n}b^{n^{2}}\Gamma)\to 0 \qquad \forall \chi\in\mathcal{M}.$$

• Can show: If $Y = H/\Delta$, then $\exists G^1, G^2 \triangleleft H$ s.t. $G = G^1 \cdot G^2$ and $\{(g_1^p g_2^{p^2}, g_1^q g_2^{q^2}): g_1 \in G^1, g_2 \in G^2\} \subset H \cdot (G_2 \times G_2).$

• Taking iterated commutators (s - 1)-times we get $U = \{u \in G_s : (u^{p^j}, u^{q^j}) \in H \text{ for some } j \in \mathbb{N}\}$ generates G_s .

• If $(a^n b^{n^2})$ totally equidistributed in X and $\int_X \Phi dm_X = 0$, then

$$\frac{1}{N}\sum_{n=1}^{N}\chi(n)\Phi(a^{n}b^{n^{2}}\Gamma)\to 0 \qquad \forall \chi\in\mathcal{M}.$$

• Can show: If $Y = H/\Delta$, then $\exists G^1, G^2 \triangleleft H$ s.t. $G = G^1 \cdot G^2$ and $\{(g_1^p g_2^{p^2}, g_1^q g_2^{q^2}): g_1 \in G^1, g_2 \in G^2\} \subset H \cdot (G_2 \times G_2).$

• Taking iterated commutators (s - 1)-times we get $U = \{u \in G_s : (u^{p^j}, u^{q^j}) \in H \text{ for some } j \in \mathbb{N}\}$ generates G_s .

This again suffices to show that

$$\int_{Y} (\Phi \otimes \overline{\Phi}) \, dm_{Y} = 0.$$

Chowla conjecture

Problem (Chowla's Conjecture)

If $P \in \mathbb{Z}[x, y]$ homogeneous, $P \neq cQ^2$ and $\lambda = Liouville$, then

$$\frac{1}{N^2}\sum_{1\leq m,n\leq N}\lambda(P(m,n))\to 0.$$

Chowla conjecture

Problem (Chowla's Conjecture)

If $P \in \mathbb{Z}[x, y]$ homogeneous, $P \neq cQ^2$ and $\lambda = Liouville$, then

$$\frac{1}{N^2}\sum_{1\leq m,n\leq N}\lambda(P(m,n))\to 0.$$

• Known when deg(P) = 2 (Landau 1918), deg(P) = 3 (Helfgott 2006), and when *P* factors linearly (Green, Tao, Ziegler 2012).

Chowla conjecture

Problem (Chowla's Conjecture)

If $P \in \mathbb{Z}[x, y]$ homogeneous, $P \neq cQ^2$ and $\lambda = Liouville$, then

$$\frac{1}{N^2}\sum_{1\leq m,n\leq N}\lambda(P(m,n))\to 0.$$

• Known when deg(P) = 2 (Landau 1918), deg(P) = 3 (Helfgott 2006), and when *P* factors linearly (Green, Tao, Ziegler 2012).

Theorem (F., Host 2014)

If χ averages to 0 on every infinite AP (for ex. the Liouville) and $P(m,n) = (m^2 + n^2)^r \prod_{i=1}^s L_i(m,n), \quad r \ge 0, \ s \in \mathbb{N},$ where L_i are pairwise independent linear forms, then

 $\frac{1}{N^2}\sum_{1\leq m,n\leq N}\chi(P(m,n))\to 0.$

Chowla conjecture: Idea of proof

• Idea: $m + in \mapsto \chi(m^2 + n^2) = \chi(\mathcal{N}(m + in))$ is multiplicative, so we can apply Kátai's criterion for the Gaussian integers.

Chowla conjecture: Idea of proof

- Idea: $m + in \mapsto \chi(m^2 + n^2) = \chi(\mathcal{N}(m + in))$ is multiplicative, so we can apply Kátai's criterion for the Gaussian integers.
- Reduce matters to showing

$$\frac{1}{N^2}\sum_{1\leq m,n\leq N}\chi(\tilde{P}(m,n))\to 0$$

where \tilde{P} is a product of 2*s* linear forms that can be shown to be pairwise independent.

- Idea: $m + in \mapsto \chi(m^2 + n^2) = \chi(\mathcal{N}(m + in))$ is multiplicative, so we can apply Kátai's criterion for the Gaussian integers.
- Reduce matters to showing

$$\frac{1}{N^2}\sum_{1\leq m,n\leq N}\chi(\tilde{P}(m,n))\to 0$$

where \tilde{P} is a product of 2*s* linear forms that can be shown to be pairwise independent.

- Such averages are bounded by a multiple of $\|\chi\|_{U^{2s-1}(\mathbb{Z}_N)}$.
- Assumption + U^{2s-1} -structure theorem $\implies \|\chi\|_{U^{2s-1}(\mathbb{Z}_N)} \to 0.$

Nikos Frantzikinakis (U. of Crete) Multiplicative functions and applications

Problem

Extend the U^s-structure theorem to more general number fields.

Example

Prove a U^s -structure theorem for $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{2}]$.

Problem

Extend the U^s-structure theorem to more general number fields.

Example

Prove a U^s -structure theorem for $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{2}]$. (W. Sun: $\mathbb{Z}[i] \ s = 3\checkmark$)

Problem

Extend the U^s-structure theorem to more general number fields.

Example

Prove a U^s -structure theorem for $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{2}]$. (W. Sun: $\mathbb{Z}[i] \ s = 3\checkmark$)

Problem

Develop tools suitable for proving multiple recurrence for mps with multiplicative structure.

Example

$$(X, \mathcal{X}, \mu, T_n)$$
 mps, $T_{mn} = T_m \circ T_n$, $\mu(A) > 0$. Show $\exists m, n \in \mathbb{N}$ s.t.

$$\mu\big(T_{m(m+n)}^{-1}A\cap T_{(m+2n)(m+3n)}^{-1}A\cap T_{(m+4n)(m+5n)}^{-1}A\big)>0.$$

Problem

Extend the U^s-structure theorem to more general number fields.

Example

Prove a U^s -structure theorem for $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{2}]$. (W. Sun: $\mathbb{Z}[i] \ s = 3\checkmark$)

Problem

Develop tools suitable for proving multiple recurrence for mps with multiplicative structure.

Example

 $(X, \mathcal{X}, \mu, T_n)$ mps, $T_{mn} = T_m \circ T_n$, $\mu(A) > 0$. Show $\exists m, n \in \mathbb{N}$ s.t.

$$\mu(T_{m(m+n)}^{-1}A \cap T_{(m+2n)(m+3n)}^{-1}A \cap T_{(m+4n)(m+5n)}^{-1}A) > 0.$$

