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We introduce amorphic complexity as a new topological invariant that mea-
sures the complexity of dynamical systems in the regime of zero entropy. Its
main purpose is to detect the very onset of disorder in the asymptotic behaviour
and it gives, for example, positive value to Denjoy examples on the circle and
Sturmian subshifts, while being zero for all isometries and Morse-Smale-systems.
After discussing basic properties and examples, we show that amorphic com-

plexity and the underlying asymptotic separation numbers can be used to dis-
tinguish almost automorphic minimal systems from equicontinuous ones. For
symbolic systems, amorphic complexity equals the box dimension of the associ-
ated Besicovitch space. In this context, we concentrate on regular Toeplitz flows
and give a detailed description of the relation to the scaling behaviour of the den-
sities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors
appearing in so-called pinched skew-product systems. Continuous-time systems,
more general group actions and the application to cut and project quasicrystals
will be treated in subsequent work.
The paradigm example of a topological complexity invariant for dynamical

systems is topological entropy, which measures the exponential growth, in time,
of orbits distinguishable with finite precision. It can be used to compare the
complexity of dynamical systems defined on arbitrary metric spaces and is central
to the powerful machinery of thermodynamic formalism. There are, however, two
situations where entropy does not provide very much information, namely when
it either zero or infinite. In the latter case, mean topological dimension has been
identified as a suitable substitute. Its theoretical significance is demonstrated,
for example, by the fact that zero mean dimension is one of the few dynamical
consequences of unique ergodicity [LW00].
In this talk, we introduce introduce amorphic complexity as a new topological

invariant that measures the complexity of dynamical systems in the regime of
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zero entropy. One of its main purposes is to detect the very onset of dynamical
complexity and the break of equicontinuity. In particular, it satisfies the following
basic requirements.

(i) is an invariant of topological conjugacy and has other ‘good properties’;

(ii) gives value zero to isometries and Morse-Smale-systems;

(iii) is able to detect, as test cases, the complexity inherent in the dynamics of
Sturmian shifts or Denjoy homeomorphisms on the circle, by taking positive
values for such systems.

The standard approach to measure the complexity of zero entropy systems
is to consider subexponential growth rates of distinguishable orbits, instead of
exponentional ones, leading to the notions of power entropy and modified power
entropy [HK02]. However, it turns out that power entropy gives positive values
to Morse-Smale-systems, whereas modified power entropy is too coarse to distin-
guish Sturmian subshifts or Denjoy examples from irrational rotations. We are
thus taking an alternative path, which leads us to define the notions of asymp-
totic separation numbers and amorphic complexity. In order to fix ideas, we
concentrate on the dynamics of maps defined on metric spaces.

Let (X, d) be a metric space and f : X → X . Given x, y ∈ X , δ > 0, ν ∈ (0, 1]
and n ∈ N we let

Sn(f, δ, x, y) = #
{

0 ≤ k < n | d(fk(x), fk(y)) ≥ δ
}

. (1)

We say that x and y are (f, δ, ν)-separated with respect to f if

lim
n→∞

Sn(f, δ, x, y)

n
≥ ν . (2)

A subset S ⊆ X is said to be (f, δ, ν)-separated with respect to f if all dis-
tinct points x, y ∈ S are (f, δ, ν)-separated. The (asymptotic) separation number
Sep(f, δ, ν), for distance δ > 0 and frequency ν ∈ (0, 1), is then defined as the
largest cardinality of a (f, δ, ν)-separated set in X . If these quantities are finite
for all δ, ν > 0, we say f has finite separation numbers, otherwise we say it has
infinite separation numbers. Further, if there exists δ > 0 such that Sep(f, δ, ν)
is uniformly bounded in ν we say that f has bounded separation numbers, oth-
erwise we say separation numbers are unbounded. These notions provide a first
qualitative indication concerning the complexity of a system. Roughly spoken,
finite but unbounded separation numbers correspond to dynamics of intermedi-
ate complexity, which we are mainly interested in here. Once a system behaves
‘chaotically’, in the sense of positive entropy or weak mixing, separation numbers
become infinite.

Theorem 1. Suppose X is a compact metric space and f : X → X is continuous.
If f has positive topological entropy or is weakly mixing with respect to some
invariant probability measure µ, then it has infinite separation numbers.
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Obviously, if f is an isometry or, more generally, equicontinuous, then its sep-
aration numbers are bounded. Moving away from equicontinuity, one encounters
the class of almost automorphic systems, which are central objects of study in
topological dynamics and include many examples of both theoretical and prac-
tical importance [Aus88]. At least in the minimal case, separation numbers are
suited to describe this transition, as the following result shows. In order to state
it, suppose that (X, d) and (Ξ, ρ) are metric spaces and f : X → X and g : Ξ → Ξ
are continuous. We say that f is an extension of g if there exists a continuous
onto map h : X → Ξ such that h ◦ f = g ◦ h. The map f is called an almost 1-1
extension of g if there exists y ∈ Ξ with #h−1(y) = 1. We further say it is an
almost sure 1-1 extension if the set E = {y ∈ Ξ | #h−1(y) > 1} has measure zero
with respect to every g-invariant probability measure µ on Ξ.1 Due to Veech’s
structure theorem [Vee65], almost automorphic minimal systems can be defined
as almost 1-1 extensions of equicontinuous minimal systems.

Theorem 2. Suppose X is a compact metric space and f : X → X is a home-
omorphism.

(a) If f is minimal and almost automorphic, but not equicontinuous, then f

has unbounded separation numbers.

(b) If f is an almost sure 1-1 extension of an equicontinuous system, then f

has finite separation numbers.

Two examples for case (b) which we discuss in more detail are regular Toeplitz
flows and Delone dynamical systems arising from certain cut and project qua-
sicrystals.

In order to obtain quantitative information, we proceed to study the scaling
behaviour of separation numbers as the separation frequency ν goes to zero. In
principle, one may consider arbitrary growth rates. However, as the examples we
discuss all indicate, it is polynomial growth which is the most relevant. Given
δ > 0, we let

ac(f, δ) = lim
ν→0

log Sep(f, δ, ν)

− log ν
, ac(f, δ) = lim

ν→0

log Sep(f, δ, ν)

− log ν
(3)

and define the upper, respectively lower amorphic complexity of f as

ac(f) = sup
δ>0

ac(f, δ) and ac(f) = sup
δ>0

ac(f, δ) . (4)

If both values coincide, ac(f) = ac(f) = ac(f) is called the amorphic complexity
of f . We have the following basic properties.

1Note that equicontinuous minimal systems are uniquely ergodic, such that there is only one measure to

consider in this case.
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Proposition 3. Suppose X,Ξ are compact metric spaces and f : X → X, g :
Ξ → Ξ continuous maps. Then the following statements hold.

(a) Factor relation: If g is a factor of f , then ac(f) ≥ ac(g) and ac(f) ≥ ac(g).
In particular, amorphic complexity is an invariant of topological conjugacy.

(b) Power invariance: For all m ∈ N we have ac(fm) = ac(f) and ac(fm) =
ac(f).

(c) Product formula: If upper and lower amorphic complexity coincide for both
f and g, then the same holds for f×g and we have ac(f×g) = ac(f)+ac(g).
Otherwise, we have ac(f×g) ≤ ac(f)+ac(g) and ac(f ×g) ≥ ac(f)+ac(g).

(d) Commutation invariance: ac(f ◦ g) = ac(g ◦ f) and ac(f ◦ g) = ac(g ◦ f).

As the power invariance indicates, amorphic complexity behaves quite differ-
ently than topological entropy in some aspects. In this context, it should also
be noted that no variational principle can be expected for amorphic complex-
ity. This is a direct consequence of the requirement (iii) above, which is met by
amorphic complexity (see below). The reason is that since Sturmian subshifts
and Denjoy examples are uniquely ergodic and measure-theoretically isomorphic
to a irrational rotations, they cannot be distinguished on a measure-theoretic
level. Hence, no reasonable analogue to the variational principle for topological
entropy can be satisfied.

Proposition 4. Amorphic complexity is zero for all isometries and Morse-
Smale-systems, but equals one for Sturmian subshifts and Denjoy examples on
the circle.

The arguments in the proof of Theorem 2 can be quantified, at least to some
extent, to obtain an upper bound on amorphic complexity for minimal almost
sure 1-1 extensions of isometries. In rough terms, the results reads as follows.
By DimB(A) and DimB(A) we denote the upper and lower box dimension, re-
spectively, of a subset A of a metric space. If both quantities coincide we denote
the common value by DimB(A) and say the box dimension of A is well-defined.

Theorem 5. Suppose X and Ξ are compact metric spaces and f : X → X is an
almost sure 1-1 extension of a minimal isometry g : Ξ → Ξ, with factor map h.
Further, assume that the box dimension of Ξ is well-defined. Then

ac(f) ≤
γ(h) ·DimB(Ξ)

DimB(Ξ) − supδ>0 DimB(Eδ)
, (5)

where Eδ = {ξ ∈ Ξ | diam(h−1(ξ) ≥ δ} and γ(h) is a scaling factor depending
on the local properties of the factor map h.

It should be mentioned, however, that at least according to our current under-
standing, this result is of rather abstract nature. The reason is the fact that the
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scaling factor γ(h) seems to be difficult to determine in specific examples, where
we use direct methods instead to obtain improved explicit estimates.

In this direction, we first investigate regular Toeplitz flows. Given a finite
alphabet A, a sequence ω ∈ AT with T = N or Z is called Toeplitz, if for all
n ∈ T there exists p ∈ N such that ωn+kp = ωn for all k ∈ T. In other
words, every symbol in a Toeplitz sequence occurs periodically. Thus, if we
let Per(p, ω) = {n ∈ T | ωn+kp = ωn ∀k ∈ T}, then

⋃

p∈N
Per(p, ω) = T. By

D(p) = 1

p
#(Per(p, ω)∩[1, p]) we denote the density of the p-periodic positions. If

limp→∞ D(p) = 1, then the Toplitz sequence is called regular. A sequence (pℓ)ℓ∈N

of integers such that pℓ+1 is a multiple of pℓ for all ℓ ∈ N and
⋃

ℓ∈N
Per(pℓ, ω) = T

is called a weak periodic structure for ω. We denote the shift orbit closure of ω
by Σω, such that (Σω , σ) is the subshift generated by ω. Then we have

Theorem 6. Suppose ω is a regular Toeplitz sequence with weak periodic struc-
ture (pℓ)ℓ∈N. Then

ac(σ|Σω
) ≤ lim

ℓ→∞

log pℓ+1

log(1−D(pℓ))
. (6)

Moreover, it is possible to construct examples demonstrating that this estimate
is sharp and that a dense set of values in [1,∞) is attained.
Finally, we turn to cut and project quasicrystals. Suppose L̃ is a cocom-

pact discrete subgroup of R
n × RD such that π1 : L̃ → R

n is injective and
π2 : L̃ → R

D has dense image. Further, assume that W ⊆ R
D is compact and

satisfies W = int(W ). The pair (L̃,W ) is called a cut and project scheme and

defines a Delone subset Λ(W ) = π1

(

(Rm ×W ) ∩ L̃
)

of Rm. A natural Rm-

action on the space of Delone sets in R
m is given by (t,Λ) 7→ Λ− t. Taking the

orbit closure Ω(Λ(W )) = {Λ(W )− t | t ∈ Rm} of Λ(W ), in a suitable topology,
we obtain a Delone dynamical system (Ω(Λ(W )),Rm) whose dynamical proper-
ties are closely related to the geometry of the Delone set Λ(W ). We refer to
[Sch99, Moo00, LP03, BLM07] and references therein for further details. For the
amorphic complexity, adapted to general actions of amenable groups, we obtain

Theorem 7 ([FGJ]). Suppose (L̃,W ) is a cut and project scheme in R
D × R

m

and (Ω(W ),Rm) is the associated Delone dynamical system. Then

ac(Ω,Rm) ≤
D

D −DimB(W )
. (7)

As in the case of regular Toeplitz flows, it can be demonstrated by means of
examples that this estimate is sharp. At the same time, equality does not always
hold.
It is well-known that under the above assumptions the dynamical system

(Ω(Λ(W )),Rm) is a almost 1-1 extension of a minimal and isometric R
m-action
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on a D-dimensional torus. Moreover, it turns out that with the notions of Theo-
rem 2 we have DimB(W ) = DimB(Eδ) for all δ > 0. Thus, (7) can be interpreted
as a special case of (5), with γ(h) = 1. However, as we have mentioned, the proof
is independent and based on more direct arguments. Hence, while the presented
results point clearly show some close relations, a better understanding of the
underlying structures still has to be obtained and should be the aim of future
research.
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