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1 Iterated monodromy groups

1.1 Algebraic definition

The following definition is due to R. Pink.
Let f(x) ∈ C be a rational function. We denote by fn(x) its nth iteration.

Let Ω be an algebraic closure of the field of functions C(t). Let Ωn ⊂ Ω be the
field obtained by adjoining all solutions of the equation fn(x) = t to C(t). It is
easy to see that Ωn ⊂ Ωn+1. Let Ω∞ be the union of the fields Ωn.

Galois iterated monodromy group is the Galois group of the extension Ω∞/C(t).

1.2 Topological version

Suppose that f(x) is post-critically finite, i.e., that the union Pf of the forward

orbits of critical points of f is finite. Let Ĉ be the Riemann sphere. Let M =
Ĉ\Pf andM1 = f−1(M). ThenM andM1 are punctured spheres,M1 ⊆M,
and

f :M1 −→M

is a covering map. Similarly, fn :Mn −→M for Mn = f−n(M) is a covering
map. Consider a basepoint t ∈M, and the tree of preimages

T =
⊔
n≥0

f−n(t),

where f−0(t) = {t}. The fundamental group π1(M, t) acts on each level of the
tree T by the classical monodromy action. Taking these actions together, we
get an action of π1(M, t) on the tree T by automorphisms. The action is not
faithful in general, and the quotient of π1(M, t) by the kernel of the action is
called the iterated monodromy group IMG(f) of the map f .
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2 Self-similar groups

2.1 Definition

The tree T can be identified with Cayley graph of the free monoid X∗, where
|X| = deg f , in a nice (though not canonical way). The iterated monodromy
group (as a group acting on X∗) becomes self-similar in the following sense.

A group G acting faithfully on X∗ is said to be self-similar if for every x ∈ X
and g ∈ G there exist y ∈ X and h ∈ G such that

(vx)g = vhy

for all v ∈ X∗.
For example, IMG(z2) is generated by one element a satisfying

(v0)a = v1, (v1)a = va0,

for all v ∈ X∗. Here X = {0, 1}. We see that a acts precisely by the rule of
adding 1 to a binary integer.

For X = {0, 1} we write
g = (g0, g1)

if (v0)g = vg00, (v1)g = vg11, and we write

g = (g0, g1)σ

if (v0)g = vg01, (v1)g = vg10 for all v.

3 Some examples

As it was mentioned above, IMG(z2) is generated by a single automorphism of
the tree, defined by

a = (1, a)σ,

where 1 is the identity automorphism, and hence is isomorphic to the infinite
cyclic group Z.

The iterated monodromy group of z2 − 2 is generated by

a = (1, 1)σ, b = (a, b).

It is isomorphic to the infinite dihedral group.
These two groups are the only examples of finitely presented iterated mon-

odromy groups of post-critically finite quadratic polynomials.
The iterated monodromy group of z2−1 is generated by two elements a and

b satisfying
a = (1, b)σ, b = (1, a).

This group is infinitely presented. It is amenable (by a result of B. Virag
and L. Bartholdi) but can not be constructed from groups of sub-exponential
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growth by the usual group-theoretic constructions preserving amenability (this
was shown by R. Grigorchuk and A. Żuk).

The iterated monodromy group of z2 + i is generated by three elements

a = (1, 1)σ, b = (a, c), c = (b, 1).

It has intermediate growth (by a result of K.-U. Bux and R. Perez).

4 Adding machine factorizations

4.1 Periodic case

Let f(z) = z2+c be a post-critically finite quadratic polynomial. Its action near
infinity topologically (i.e., up to homotopy) is the same as the action of z2. It
follows that IMG(f) contains IMG(z2) generated by the loop a around infinity.
The iterated monodromy group of f(z) is generated by loops around the finite
post-critical points of f . We can choose these generators a1, a2, . . . , an in such
a way that a = a1a2 · · · an, and thus arrive at adding machine factorizations in
the automorphism group of the tree X∗.

Consider at first the case when the critical point 0 of f(z) = z2 + c belongs
to a cycle of iterations of f . One can show, after choosing special generating set
ai and special encoding of the preimage tree by X∗ that IMG f can be defined
in the following way.

Let w = x1x2 . . . ∈ X∞ be a periodic sequence (here X = {0, 1}, as before).
Denote by s : X∞ −→ X∞ the shift map s(x1x2 . . .) = x2x3 . . .. The iter-
ated monodromy group is generated by automorphisms τu indexed by infinite
sequences u ∈ {sn(w) : s ∈ N}, and defined by the recursions:

τu = (τ0u, τ1u),

if u 6= w, and
τw = (τ∞(1w,0w), τ[1w,0w])σ,

where τI denotes the product of all generators τu belonging to the interval I in
the inverse lexicographic order. If u is not a shift of w, then τu = 1.

We show that for every quadratic polynomial f with periodic critical point
there exists a periodic sequence w such that the group generated by τu is
IMG(f), and conversely, for every periodic sequence w the group Gw gener-
ated by τu is the iterated monodromy group of a quadratic polynomial with
periodic critical point.

4.2 General case

In fact, one can use above recurrent relations to define automorphisms τu for
any sequence w. Note that then τ(1w,0w) and τ[1w,0w] are products of infinite
number of elements τu, but it is still well defined, as a product in a profinite
group of a linearly ordered countable set converging to identity.

For a sequence w ∈ X∞, denote by Gw the group generated by products τI ,
where I is an interval whose endpoints are eventually periodic sequences.
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5 Mandelbrot set

The Mandelbrot set M is the set of complex numbers c such that the orbit of
0 under iterations of z2 + c is bounded. It is known that the complement ofM
in C is bi-holomorphically isomorphic to the complement of the closed unit disc
D. Let Φ : C \D −→ C \M be the isomorphism tangent to identity at infinity.
An external ray Rθ is the image of the ray {re2πiθ : r > 1} under Φ. It is
not known if all rays land, i.e., if the limit limr→1+ Φ(re2πiθ) exists for every θ.
This depends on the famous question of local connectivity of M. It is known,
however, that all rays with rational θ land.

Theorem. Let θ1, θ2 ∈ [0, 1] be rational numbers, and let w1, w2 ∈ X∞ be their
binary expansions. Then Rθ1 , Rθ2 land on the same point of M if and only if
Gw1

= Gw2
. If M is locally connected, then the same statement is true for all

angles θ1, θ2.
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