Adding machine factorizations and iterations of quadratic polynomials

V. Nekrashevych

The talk is based on a joint work with D. Dudko and L. Bartholdi.

1 Iterated monodromy groups

1.1 Algebraic definition

The following definition is due to R. Pink.
Let $f(x) \in \mathbb{C}$ be a rational function. We denote by $f^{n}(x)$ its nth iteration. Let $\bar{\Omega}$ be an algebraic closure of the field of functions $\mathbb{C}(t)$. Let $\Omega_{n} \subset \bar{\Omega}$ be the field obtained by adjoining all solutions of the equation $f^{n}(x)=t$ to $\mathbb{C}(t)$. It is easy to see that $\Omega_{n} \subset \Omega_{n+1}$. Let Ω_{∞} be the union of the fields Ω_{n}.

Galois iterated monodromy group is the Galois group of the extension $\Omega_{\infty} / \mathbb{C}(t)$.

1.2 Topological version

Suppose that $f(x)$ is post-critically finite, i.e., that the union P_{f} of the forward orbits of critical points of f is finite. Let $\widehat{\mathbb{C}}$ be the Riemann sphere. Let $\mathcal{M}=$ $\hat{\mathbb{C}} \backslash P_{f}$ and $\mathcal{M}_{1}=f^{-1}(\mathcal{M})$. Then \mathcal{M} and \mathcal{M}_{1} are punctured spheres, $\mathcal{M}_{1} \subseteq \mathcal{M}$, and

$$
f: \mathcal{M}_{1} \longrightarrow \mathcal{M}
$$

is a covering map. Similarly, $f^{n}: \mathcal{M}_{n} \longrightarrow \mathcal{M}$ for $\mathcal{M}_{n}=f^{-n}(\mathcal{M})$ is a covering map. Consider a basepoint $t \in \mathcal{M}$, and the tree of preimages

$$
T=\bigsqcup_{n \geq 0} f^{-n}(t)
$$

where $f^{-0}(t)=\{t\}$. The fundamental group $\pi_{1}(\mathcal{M}, t)$ acts on each level of the tree T by the classical monodromy action. Taking these actions together, we get an action of $\pi_{1}(\mathcal{M}, t)$ on the tree T by automorphisms. The action is not faithful in general, and the quotient of $\pi_{1}(\mathcal{M}, t)$ by the kernel of the action is called the iterated monodromy group $\operatorname{IMG}(f)$ of the map f.

2 Self-similar groups

2.1 Definition

The tree T can be identified with Cayley graph of the free monoid X^{*}, where $|X|=\operatorname{deg} f$, in a nice (though not canonical way). The iterated monodromy group (as a group acting on X^{*}) becomes self-similar in the following sense.

A group G acting faithfully on X^{*} is said to be self-similar if for every $x \in X$ and $g \in G$ there exist $y \in X$ and $h \in G$ such that

$$
(v x)^{g}=v^{h} y
$$

for all $v \in X^{*}$.
For example, $\operatorname{IMG}\left(z^{2}\right)$ is generated by one element a satisfying

$$
(v 0)^{a}=v 1, \quad(v 1)^{a}=v^{a} 0
$$

for all $v \in X^{*}$. Here $X=\{0,1\}$. We see that a acts precisely by the rule of adding 1 to a binary integer.

For $X=\{0,1\}$ we write

$$
g=\left(g_{0}, g_{1}\right)
$$

if $(v 0)^{g}=v^{g_{0}} 0,(v 1)^{g}=v^{g_{1}} 1$, and we write

$$
g=\left(g_{0}, g_{1}\right) \sigma
$$

if $(v 0)^{g}=v^{g_{0}} 1,(v 1)^{g}=v^{g_{1}} 0$ for all v.

3 Some examples

As it was mentioned above, $\operatorname{IMG}\left(z^{2}\right)$ is generated by a single automorphism of the tree, defined by

$$
a=(1, a) \sigma
$$

where 1 is the identity automorphism, and hence is isomorphic to the infinite cyclic group \mathbb{Z}.

The iterated monodromy group of $z^{2}-2$ is generated by

$$
a=(1,1) \sigma, b=(a, b)
$$

It is isomorphic to the infinite dihedral group.
These two groups are the only examples of finitely presented iterated monodromy groups of post-critically finite quadratic polynomials.

The iterated monodromy group of $z^{2}-1$ is generated by two elements a and b satisfying

$$
a=(1, b) \sigma, b=(1, a)
$$

This group is infinitely presented. It is amenable (by a result of B. Virag and L. Bartholdi) but can not be constructed from groups of sub-exponential
growth by the usual group-theoretic constructions preserving amenability (this was shown by R. Grigorchuk and A. Żuk).

The iterated monodromy group of $z^{2}+i$ is generated by three elements

$$
a=(1,1) \sigma, b=(a, c), c=(b, 1) .
$$

It has intermediate growth (by a result of K.-U. Bux and R. Perez).

4 Adding machine factorizations

4.1 Periodic case

Let $f(z)=z^{2}+c$ be a post-critically finite quadratic polynomial. Its action near infinity topologically (i.e., up to homotopy) is the same as the action of z^{2}. It follows that $\operatorname{IMG}(f)$ contains $\operatorname{IMG}\left(z^{2}\right)$ generated by the loop a around infinity. The iterated monodromy group of $f(z)$ is generated by loops around the finite post-critical points of f. We can choose these generators $a_{1}, a_{2}, \ldots, a_{n}$ in such a way that $a=a_{1} a_{2} \cdots a_{n}$, and thus arrive at adding machine factorizations in the automorphism group of the tree X^{*}.

Consider at first the case when the critical point 0 of $f(z)=z^{2}+c$ belongs to a cycle of iterations of f. One can show, after choosing special generating set a_{i} and special encoding of the preimage tree by X^{*} that IMG f can be defined in the following way.

Let $w=x_{1} x_{2} \ldots \in X^{\infty}$ be a periodic sequence (here $X=\{0,1\}$, as before). Denote by $s: X^{\infty} \longrightarrow X^{\infty}$ the shift map $s\left(x_{1} x_{2} \ldots\right)=x_{2} x_{3} \ldots$. The iterated monodromy group is generated by automorphisms τ_{u} indexed by infinite sequences $u \in\left\{s^{n}(w): s \in \mathbb{N}\right\}$, and defined by the recursions:

$$
\tau_{u}=\left(\tau_{0 u}, \tau_{1 u}\right)
$$

if $u \neq w$, and

$$
\tau_{w}=\left(\tau_{(1 w, 0 w)}^{\infty}, \tau_{[1 w, 0 w]}\right) \sigma
$$

where τ_{I} denotes the product of all generators τ_{u} belonging to the interval I in the inverse lexicographic order. If u is not a shift of w, then $\tau_{u}=1$.

We show that for every quadratic polynomial f with periodic critical point there exists a periodic sequence w such that the group generated by τ_{u} is $\operatorname{IMG}(f)$, and conversely, for every periodic sequence w the group G_{w} generated by τ_{u} is the iterated monodromy group of a quadratic polynomial with periodic critical point.

4.2 General case

In fact, one can use above recurrent relations to define automorphisms τ_{u} for any sequence w. Note that then $\tau_{(1 w, 0 w)}$ and $\tau_{[1 w, 0 w]}$ are products of infinite number of elements τ_{u}, but it is still well defined, as a product in a profinite group of a linearly ordered countable set converging to identity.

For a sequence $w \in X^{\infty}$, denote by G_{w} the group generated by products τ_{I}, where I is an interval whose endpoints are eventually periodic sequences.

5 Mandelbrot set

The Mandelbrot set \mathcal{M} is the set of complex numbers c such that the orbit of 0 under iterations of $z^{2}+c$ is bounded. It is known that the complement of \mathcal{M} in \mathbb{C} is bi-holomorphically isomorphic to the complement of the closed unit disc \mathbb{D}. Let $\Phi: \mathbb{C} \backslash \mathbb{D} \longrightarrow \mathbb{C} \backslash \mathcal{M}$ be the isomorphism tangent to identity at infinity. An external ray R_{θ} is the image of the ray $\left\{r e^{2 \pi i \theta}: r>1\right\}$ under Φ. It is not known if all rays land, i.e., if the $\operatorname{limit}^{\lim } r_{\rightarrow 1+} \Phi\left(r e^{2 \pi i \theta}\right)$ exists for every θ. This depends on the famous question of local connectivity of \mathcal{M}. It is known, however, that all rays with rational θ land.

Theorem. Let $\theta_{1}, \theta_{2} \in[0,1]$ be rational numbers, and let $w_{1}, w_{2} \in X^{\infty}$ be their binary expansions. Then $R_{\theta_{1}}, R_{\theta_{2}}$ land on the same point of \mathcal{M} if and only if $G_{w_{1}}=G_{w_{2}}$. If \mathcal{M} is locally connected, then the same statement is true for all angles θ_{1}, θ_{2}.

