Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H,G)-bibundles	Classifying theory

Bispaces and Bibundles

Michael Murray

University of Adelaide

http://www.maths.adelaide.edu.au/michael.murray/

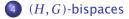
Geometry and Quantum Field Theory, MPI Bonn, June 2010

Introduction	G-bispaces 000000	Crossed-modules 00000	(H,G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
Introdu	ction				

۲

- Joint work with David Roberts and Danny Stevenson
- I'll put the talk on my webpage
- There should be a paper on the arXiv ... soon.

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
Outline					



(H, G)-bibundles

Introduction ●O	G-bispaces 000000	Crossed-modules	(H, G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
Why bi	bundles	?			

- If G is a Lie group a G-bibundle is a principal (right) G-bundle $P \rightarrow M$ which has an additional free left G action commuting with the right action and having the same orbits.
- These are needed in the definition of gerbes for a (non-abelian) group *G* where you would like to be able to form a product of two principal *G*-bundles.
- This is not generally possible for principal *G*-bundles unless *G* is abelian.
- However if $P \to M$ and $Q \to M$ are bibundles you can form a product $P \otimes Q \to M$ by forming fibrewise

 $(P \otimes Q)_m = (P_m \times Q_m)/G$

where G acts by $(p,q)g = (pg,g^{-1}q)$.

• $P \otimes Q$ is also a bibundle.

Introduction ●O	G-bispaces	Crossed-modules	(H,G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
Why bit	bundles	?			

- If G is a Lie group a G-bibundle is a principal (right) G-bundle $P \rightarrow M$ which has an additional free left G action commuting with the right action and having the same orbits.
- These are needed in the definition of gerbes for a (non-abelian) group *G* where you would like to be able to form a product of two principal *G*-bundles.
- This is not generally possible for principal *G*-bundles unless *G* is abelian.
- However if $P \to M$ and $Q \to M$ are bibundles you can form a product $P \otimes Q \to M$ by forming fibrewise

 $(P \otimes Q)_m = (P_m \times Q_m)/G$

where G acts by $(p,q)g = (pg,g^{-1}q)$.

• $P \otimes Q$ is also a bibundle.

Introduction ●O	G-bispaces	Crossed-modules	(H,G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
Why bit	bundles	?			

- If G is a Lie group a G-bibundle is a principal (right) G-bundle $P \rightarrow M$ which has an additional free left G action commuting with the right action and having the same orbits.
- These are needed in the definition of gerbes for a (non-abelian) group *G* where you would like to be able to form a product of two principal *G*-bundles.
- This is not generally possible for principal *G*-bundles unless *G* is abelian.
- However if $P \to M$ and $Q \to M$ are bibundles you can form a product $P \otimes Q \to M$ by forming fibrewise

$$(P \otimes Q)_m = (P_m \times Q_m)/G$$

where G acts by $(p,q)g = (pg,g^{-1}q)$.

• $P \otimes Q$ is also a bibundle.

Introduction	G-bispaces	Crossed-modules	(H, G)-bispaces	(H, G)-bibundles	Classifying theory
00					

- Bibundles are not a new idea. They certainly goes back to work of Breen on bitorsors in 1990.
- Also discussed by Aschieri, Cantini, and Jurco in 2005.
- However when you look for examples there are not as many of them as there are principal bundles.
- Our aim is to address this existence question.
- It turns out that we need to use **crossed modules** instead of just Lie groups *G*.
- While my coworkers are keen crossed module and 2-group people I resisted this at first.
- Let me take you through the reasons for adding this extra complexity.

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H, G)-bibundles	Classifying theory
00					

- Bibundles are not a new idea. They certainly goes back to work of Breen on bitorsors in 1990.
- Also discussed by Aschieri, Cantini, and Jurco in 2005.
- However when you look for examples there are not as many of them as there are principal bundles.
- Our aim is to address this existence question.
- It turns out that we need to use crossed modules instead of just Lie groups *G*.
- While my coworkers are keen crossed module and 2-group people I resisted this at first.
- Let me take you through the reasons for adding this extra complexity.

Introduction	G-bispaces ●00000	Crossed-modules	(H,G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
<i>G</i> -hisn	aces				

Examples

- Let G be abelian and X a right G-space. Define $g \star x \star h = xh(g^{-1})$.
- This only works when *G* is abelian. Otherwise left and right actions don't commute.
- We regard this bispaces as uninteresting examples.

- Take *X* = *G* with the usual left and right *G* action. Call this the trivial bispace *T*.
- Fix $\xi \in Aut(G)$ and define X with the action $g \star x \star h = \xi^{-1}(g)xh$. Call this bispace $T(\xi)$.

Introduction	G-bispaces ●00000	Crossed-modules	(H,G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
G-bisp	aces				

Examples 1

- Let *G* be abelian and *X* a right *G*-space. Define $g \star x \star h = xh(g^{-1})$.
- This only works when *G* is abelian. Otherwise left and right actions don't commute.
- We regard this bispaces as uninteresting examples.

- Take *X* = *G* with the usual left and right *G* action. Call this the trivial bispace *T*.
- Fix ξ ∈ Aut(G) and define X with the action
 g ★ x ★ h = ξ⁻¹(g)xh. Call this bispace T(ξ).

Introduction	G-bispaces ●00000	Crossed-modules	(H,G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
G-bisp	aces				

Examples 1

- Let *G* be abelian and *X* a right *G*-space. Define $g \star x \star h = xh(g^{-1})$.
- This only works when *G* is abelian. Otherwise left and right actions don't commute.
- We regard this bispaces as uninteresting examples.

- Take *X* = *G* with the usual left and right *G* action. Call this the trivial bispace *T*.
- Fix ξ ∈ Aut(G) and define X with the action
 g ★ x ★ h = ξ⁻¹(g)xh. Call this bispace T(ξ).

Introduction	G-bispaces ●00000	Crossed-modules	(H,G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
G-bisp	aces				

Examples 1

- Let *G* be abelian and *X* a right *G*-space. Define $g \star x \star h = xh(g^{-1})$.
- This only works when *G* is abelian. Otherwise left and right actions don't commute.
- We regard this bispaces as uninteresting examples.

- Take *X* = *G* with the usual left and right *G* action. Call this the trivial bispace *T*.
- Fix $\xi \in Aut(G)$ and define *X* with the action $g \star x \star h = \xi^{-1}(g)xh$. Call this bispace $T(\xi)$.

00 000000 00000 00 000000 000000	Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H, G)-bibundles	Classifying theory
		00000				

• The left and right *G*-actions are related by the structure map

 $\psi\colon X\to \operatorname{Aut}(G)$

defined by $xg = \psi(x)(g)x$.

• The structure map is equivariant in the sense that $\psi(xg) = \psi(x) \circ \operatorname{Ad}(g)$.

Lemma 3 (Breen)

The construction of the structure map defines an equivalence between

G-bispaces X.

2 Pairs (X, ψ) consisting of a right *G*-space *X* and an equivariant map $\psi: X \to Aut(G)$.

00 000000 00000 00 000000 000000	Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H, G)-bibundles	Classifying theory
		00000				

• The left and right *G*-actions are related by the structure map

 $\psi\colon X\to \operatorname{Aut}(G)$

defined by $xg = \psi(x)(g)x$.

• The structure map is equivariant in the sense that $\psi(xg) = \psi(x) \circ \operatorname{Ad}(g)$.

Lemma 3 (Breen)

The construction of the structure map defines an equivalence between

G-bispaces X.

2 Pairs (X, ψ) consisting of a right *G*-space *X* and an equivariant map $\psi: X \to Aut(G)$.

Introduction	G-bispaces 00●000	Crossed-modules	(H,G)-bispaces 00	(H, G)-bibundles	Classifying theory			
The Type of a <i>G</i> -bispace								

- There is a natural notion of a morphism of *G*-bispaces *X* and *Y*. This is a map $f: X \to Y$ commuting with the *G*-actions.
- From the equivariance of the structure map it has image in an orbit of Ad(G) on the right of Aut(G) and thus defines an element of Out(G) = Aut(G) / Ad(G). We call this the type of X and denote it Type(X).

Example 4 ($T(\xi)$)

The structure map is defined by $x \star h = \psi(x)(h) \star x$ and we have $g \star x \star h = \xi^{-1}(g)xh$. It follows that $xh = (\xi^{-1}(\psi(x)(h)))x$ or $\xi(xhx^{-1}) = \psi(x)(h)$ and hence

 $\psi(x) = \xi \circ \operatorname{Ad}(x)$ and $\operatorname{Type}(T(\xi)) = [\xi]$

where $[\xi]$ is the image under $Aut(G) \rightarrow Out(G)$ of ξ .

Introduction	G-bispaces 00●000	Crossed-modules	(H,G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory				
The Tv	The Type of a <i>G</i> -bispace								

- There is a natural notion of a morphism of *G*-bispaces *X* and *Y*. This is a map $f: X \to Y$ commuting with the *G*-actions.
- From the equivariance of the structure map it has image in an orbit of Ad(G) on the right of Aut(G) and thus defines an element of Out(G) = Aut(G) / Ad(G). We call this the type of X and denote it Type(X).

Example 4 ($T(\xi)$)

The structure map is defined by $x \star h = \psi(x)(h) \star x$ and we have $g \star x \star h = \xi^{-1}(g)xh$. It follows that $xh = (\xi^{-1}(\psi(x)(h)))x$ or $\xi(xhx^{-1}) = \psi(x)(h)$ and hence

 $\psi(x) = \xi \circ \operatorname{Ad}(x)$ and $\operatorname{Type}(T(\xi)) = [\xi]$

where $[\xi]$ is the image under $Aut(G) \rightarrow Out(G)$ of ξ .

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H,G)-bibundles	Classifying theory
	000000				

Denote by $Bisp_G$ the set of all *G*-bispaces. We have

Lemma 5

Two G-bispaces X and Y are isomorphic if and only if

 $\operatorname{Type}(X) = \operatorname{Type}(Y)$

As every element of Out(G) arises as the type of some $T(\xi)$ we have

Proposition 6

The isomorphism classes of G-bispaces are in bijective correspondence with Out(G) via the type map

Type: $\operatorname{Bisp}_G \to \operatorname{Out}(G)$

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H, G)-bibundles	Classifying theory
	000000				

Denote by $Bisp_G$ the set of all *G*-bispaces. We have

Lemma 5

Two G-bispaces X and Y are isomorphic if and only if

 $\operatorname{Type}(X) = \operatorname{Type}(Y)$

As every element of Out(G) arises as the type of some $T(\xi)$ we have

Proposition 6

The isomorphism classes of G-bispaces are in bijective correspondence with Out(G) via the type map

Type: $\operatorname{Bisp}_G \to \operatorname{Out}(G)$

- If X and Y are G-bispaces we have seen how to define a new G-bispace $X \otimes Y$.
- We can also define a dual X* to be the same set but a new action g * x * h = h⁻¹xg⁻¹.

Lemma 7

```
The map Type: \operatorname{Bisp}_G \to \operatorname{Out}(G) satisfies
```

```
2 Type(X^*) = (Type(X))^{-1}.
```

• We say that the type map is multiplicative.

- If X and Y are G-bispaces we have seen how to define a new G-bispace $X \otimes Y$.
- We can also define a dual X* to be the same set but a new action g * x * h = h⁻¹xg⁻¹.

Lemma 7

The map Type: $Bisp_G \rightarrow Out(G)$ satisfies Type($X \otimes Y$) = Type(X) Type(Y)

2 Type $(X^*) = (Type(X))^{-1}$.

• We say that the type map is multiplicative.

Introduction	G-bispaces 0000●0	Crossed-modules	(H,G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
Proper	ties of t	ne type ma	n		

- If X and Y are G-bispaces we have seen how to define a new G-bispace $X \otimes Y$.
- We can also define a dual X* to be the same set but a new action g * x * h = h⁻¹xg⁻¹.

Lemma 7

The map Type: $\operatorname{Bisp}_G \to \operatorname{Out}(G)$ satisfies Type $(X \otimes Y) = \operatorname{Type}(X) \operatorname{Type}(Y)$

2 Type
$$(X^*) = (Type(X))^{-1}$$
.

• We say that the type map is multiplicative.

Changing structure group of a G-bispace

- If X is a right G-space and $f: G \to K$ a homomorphism there is a natural right K-space X_K defined by $X_K = (X \times K)/G$ where the G action is $(x,k)g = (xg, f(g)^{-1}k)$ and the K-action on equivalence classes is [x,k]k' = [x,kk'].
- There is a map $X \rightarrow X_K$ satisfying the obvious equivariance condition relative to $f: G \rightarrow K$.
- What about G-bispaces? It usually doesn't work.
- The way to make it work is to choose (if you can) a homomorphism \tilde{f} : $\operatorname{Aut}(G) \to \operatorname{Aut}(K)$ such that $\tilde{f} \circ \operatorname{Ad}_G = \operatorname{Ad}_K \circ f$.
- Now use the equivalence of bispaces and right spaces with structure map from Lemma 3. Given X a right G-space with structure map ψ_G then X_K is a right K-space with structure map $\psi_K([x,k]) = \tilde{f}(\psi(x)) \operatorname{Ad}(k)$.
- This is telling us we should be using crossed modules.

Changing structure group of a G-bispace

- If X is a right G-space and $f: G \to K$ a homomorphism there is a natural right K-space X_K defined by $X_K = (X \times K)/G$ where the G action is $(x,k)g = (xg, f(g)^{-1}k)$ and the K-action on equivalence classes is [x,k]k' = [x,kk'].
- There is a map $X \to X_K$ satisfying the obvious equivariance condition relative to $f: G \to K$.
- What about *G*-bispaces? It usually doesn't work.
- The way to make it work is to choose (if you can) a homomorphism \tilde{f} : Aut(G) \rightarrow Aut(K) such that $\tilde{f} \circ \operatorname{Ad}_G = \operatorname{Ad}_K \circ f$.
- Now use the equivalence of bispaces and right spaces with structure map from Lemma 3. Given *X* a right *G*-space with structure map ψ_G then X_K is a right *K*-space with structure map $\psi_K([x, k]) = \tilde{f}(\psi(x)) \operatorname{Ad}(k)$.
- This is telling us we should be using crossed modules.

- If X is a right G-space and $f: G \to K$ a homomorphism there is a natural right K-space X_K defined by $X_K = (X \times K)/G$ where the G action is $(x,k)g = (xg, f(g)^{-1}k)$ and the K-action on equivalence classes is [x,k]k' = [x,kk'].
- There is a map $X \to X_K$ satisfying the obvious equivariance condition relative to $f: G \to K$.
- What about *G*-bispaces? It usually doesn't work.
- The way to make it work is to choose (if you can) a homomorphism \tilde{f} : $\operatorname{Aut}(G) \to \operatorname{Aut}(K)$ such that $\tilde{f} \circ \operatorname{Ad}_G = \operatorname{Ad}_K \circ f$.
- Now use the equivalence of bispaces and right spaces with structure map from Lemma 3. Given *X* a right *G*-space with structure map ψ_G then X_K is a right *K*-space with structure map $\psi_K([x,k]) = \tilde{f}(\psi(x)) \operatorname{Ad}(k)$.

This is telling us we should be using crossed modules.

- Changing structure group of a <u>G-bispace</u>
 - If X is a right G-space and $f: G \to K$ a homomorphism there is a natural right K-space X_K defined by $X_K = (X \times K)/G$ where the G action is $(x,k)g = (xg, f(g)^{-1}k)$ and the K-action on equivalence classes is [x,k]k' = [x,kk'].
 - There is a map $X \rightarrow X_K$ satisfying the obvious equivariance condition relative to $f: G \rightarrow K$.
 - What about *G*-bispaces? It usually doesn't work.
 - The way to make it work is to choose (if you can) a homomorphism \tilde{f} : $\operatorname{Aut}(G) \to \operatorname{Aut}(K)$ such that $\tilde{f} \circ \operatorname{Ad}_G = \operatorname{Ad}_K \circ f$.
 - Now use the equivalence of bispaces and right spaces with structure map from Lemma 3. Given X a right *G*-space with structure map ψ_G then X_K is a right *K*-space with structure map $\psi_K([x,k]) = \tilde{f}(\psi(x)) \operatorname{Ad}(k)$.
 - This is telling us we should be using crossed modules.

Introduction	G-bispaces	Crossed-modules ●○○○○	(H,G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
~					

Crossed-modules

A crossed module is a generalisation of the pair G, Aut(G). More precisely:

Definition 8

A crossed module is a pair of groups (H, G) with homomorphisms

$$G \xrightarrow{t} H \xrightarrow{\alpha} \operatorname{Aut}(G)$$

such that

•
$$t(\alpha(h)(g)) = ht(g)h^{-1}$$
 and;

Note that

- (1) \Rightarrow $G_1 = \ker(t) \subset Z(G)$ the centre of G, and hence $\ker(t)$ is abelian,
- (2) \Rightarrow $t(G) \subset H$ is normal.

Introduction	G-bispaces 000000	Crossed-modules	(H, G)-bispaces	(H,G)-bibundles	Classifying theory
_					

Crossed-modules

A crossed module is a generalisation of the pair G, Aut(G). More precisely:

Definition 8

A crossed module is a pair of groups (H, G) with homomorphisms

$$G \xrightarrow{t} H \xrightarrow{\alpha} \operatorname{Aut}(G)$$

such that

1
$$t(\alpha(h)(g)) = ht(g)h^{-1}$$
 and;

 $\ \ \, \textbf{ a} \circ t = \mathrm{Ad}_G.$

Note that

- (1) \Rightarrow $G_1 = \ker(t) \subset Z(G)$ the centre of G, and hence $\ker(t)$ is abelian,
- (2) \Rightarrow $t(G) \subset H$ is normal.

Introduction	G-bispaces 000000	Crossed-modules	(H, G)-bispaces	(H,G)-bibundles	Classifying theory
_					

Crossed-modules

A crossed module is a generalisation of the pair G, Aut(G). More precisely:

Definition 8

A crossed module is a pair of groups (H, G) with homomorphisms

$$G \xrightarrow{t} H \xrightarrow{\alpha} \operatorname{Aut}(G)$$

such that

1
$$t(\alpha(h)(g)) = ht(g)h^{-1}$$
 and;

$$\circ t = \mathrm{Ad}_G.$$

Note that

- (1) \Rightarrow $G_1 = \ker(t) \subset Z(G)$ the centre of G, and hence $\ker(t)$ is abelian,
- (2) \Rightarrow $t(G) \subset H$ is normal.

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H, G)-bibundles	Classifying theory
		0000			

Examples of crossed modules

Example 9

The pair (Aut(G), G) is a crossed module

 $G \stackrel{\mathrm{ad}}{\to} \operatorname{Aut}(G) \stackrel{\mathrm{id}}{\to} \operatorname{Aut}(G)$

Example 10

For any group G there is a crossed module

 $1 \to G \to \operatorname{Aut}(1) = 1$

Example 1[°]

There is a crossed module

 $A \rightarrow 1 \rightarrow \operatorname{Aut}(A)$

if and only if A is abelian.

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H, G)-bibundles	Classifying theory
		0000			

Examples of crossed modules

Example 9

The pair (Aut(G), G) is a crossed module

$$G \stackrel{\mathrm{ad}}{\rightarrow} \operatorname{Aut}(G) \stackrel{\mathrm{id}}{\rightarrow} \operatorname{Aut}(G)$$

Example 10

For any group G there is a crossed module

$$1 \to G \to \operatorname{Aut}(1) = 1$$

Example 1

There is a crossed module

$$A \rightarrow 1 \rightarrow \operatorname{Aut}(A)$$

if and only if A is abelian.

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H, G)-bibundles	Classifying theory
		0000			

Examples of crossed modules

Example 9

The pair (Aut(G), G) is a crossed module

$$G \xrightarrow{\mathrm{ad}} \mathrm{Aut}(G) \xrightarrow{\mathrm{id}} \mathrm{Aut}(G)$$

Example 10

For any group G there is a crossed module

$$1 \to G \to \operatorname{Aut}(1) = 1$$

Example 11

There is a crossed module

$$A \rightarrow 1 \rightarrow \operatorname{Aut}(A)$$

if and only if A is abelian.

Introduction G-bi	ispaces Cro	ssed-modules	H,G)-bispaces	(H,G)-bibundles	Classifying theory
	000 000	•00	00		

Example 12

If *G* is a normal subgroup of *H* then the adjoint action of *H* on *H* fixes *G* and this defines a homomorphism $\alpha: H \to \operatorname{Aut}(G)$. The result is a crossed module

 $G \rightarrow H \rightarrow \operatorname{Aut}(G)$

Example 13

In particular if *PK* is the group of smooth based paths $\gamma : [0,1] \rightarrow K$ then ΩK the group of loops ($\gamma(0) = \gamma(1) = 1$) is a normal subgroup so that we have a crossed module

 $\Omega K \to P K \to \operatorname{Aut}(\Omega K)$

Introduction	G-bispaces	Crossed-modules	(H, G)-bispaces	(H, G)-bibundles	Classifying theory
		00000			

Example 12

If *G* is a normal subgroup of *H* then the adjoint action of *H* on *H* fixes *G* and this defines a homomorphism $\alpha: H \to Aut(G)$. The result is a crossed module

$$G \rightarrow H \rightarrow \operatorname{Aut}(G)$$

Example 13

In particular if *PK* is the group of smooth based paths $\gamma : [0,1] \rightarrow K$ then ΩK the group of loops ($\gamma(0) = \gamma(1) = 1$) is a normal subgroup so that we have a crossed module

 $\Omega K \to P K \to \operatorname{Aut}(\Omega K)$

Introduction	G-bispaces	Crossed-modules	(H, G)-bispaces	(H, G)-bibundles	Classifying theory
		00000			

Example 12

If *G* is a normal subgroup of *H* then the adjoint action of *H* on *H* fixes *G* and this defines a homomorphism $\alpha: H \to \operatorname{Aut}(G)$. The result is a crossed module

$$G \rightarrow H \rightarrow \operatorname{Aut}(G)$$

Example 13

In particular if *PK* is the group of smooth based paths $\gamma: [0,1] \rightarrow K$ then ΩK the group of loops ($\gamma(0) = \gamma(1) = 1$) is a normal subgroup so that we have a crossed module

 $\Omega K {\rightarrow} PK {\rightarrow} \operatorname{Aut}(\Omega K)$

Properties of crossed modules

There is an obvious definition of a morphism of crossed modules:

Definition 14

A morphism of crossed modules $(H, G) \rightarrow (H', G')$ consists of a pair of homomorphisms $u: H \rightarrow H'$ and $v: G \rightarrow G'$ such that the diagram

commutes and the equivariance condition

 $v(\alpha(h)(g)) = \alpha'(u(h))(v(g))$

is satisfied.

There is an obvious definition of a morphism of crossed modules:

Definition 14

A morphism of crossed modules $(H,G) \rightarrow (H',G')$ consists of a pair of homomorphisms $u: H \rightarrow H'$ and $v: G \rightarrow G'$ such that the diagram

commutes and the equivariance condition

$$v(\alpha(h)(g)) = \alpha'(u(h))(v(g))$$

is satisfied.

Introduction	G-bispaces 000000	Crossed-modules ○○○○●	(H, G)-bispaces	(H,G)-bibundles	Classifying theory

Theorem 15 (Football Theorem)

Winning is not transitive.

Introduction	G-bispaces 000000	Crossed-modules ○○○○●	(H, G)-bispaces	(H,G)-bibundles	Classifying theory

Theorem 15 (Football Theorem)

Winning is not transitive.

Proof.

• Ghana defeated Serbia

Introduction 00	G-bispaces	Crossed-modules ○○○○●	(H,G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
-	11				

Theorem 15 (Football Theorem)

Winning is not transitive.

- Ghana defeated Serbia
- Serbia defeated Germany

Introduction	G-bispaces 000000	Crossed-modules ○○○○●	(H, G)-bispaces	(H,G)-bibundles	Classifying theory

Theorem 15 (Football Theorem)

Winning is not transitive.

- Ghana defeated Serbia
- Serbia defeated Germany
- Germany defeated Australia

Introduction 00	G-bispaces 000000	Crossed-modules ○○○○●	(H, G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
I	11.000				

Theorem 15 (Football Theorem)

Winning is not transitive.

- Ghana defeated Serbia
- Serbia defeated Germany
- Germany defeated Australia
- Ghana draws with Australia

Introduction	G-bispaces 000000	Crossed-modules 00000	(H,G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
(H,G)-	bispace	S			

Definition 16 (Breen)

Let (H, G) be a crossed module. An (H, G)-bispace is a pair (X, ψ) consisting of a right *G*-space *X* and an equivariant map $\psi \colon X \to H$.

- We call ψ the structure map again.
- Equivariance means $\psi(xg) = \psi(x)t(g)$ and hence defines the type of *X* which is now an element in H/t(G). This is a group because t(G) is normal.
- There is a dual and a product which are a little trickier to define. Again the type map is multiplicative.
- Again we have:

Introduction 00	G-bispaces	Crossed-modules 00000	(H,G)-bispaces ••	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
(H,G)-	bispace	S			

Definition 16 (Breen)

Let (H, G) be a crossed module. An (H, G)-bispace is a pair (X, ψ) consisting of a right *G*-space *X* and an equivariant map $\psi : X \to H$.

• We call ψ the structure map again.

- Equivariance means $\psi(xg) = \psi(x)t(g)$ and hence defines the type of *X* which is now an element in H/t(G). This is a group because t(G) is normal.
- There is a dual and a product which are a little trickier to define. Again the type map is multiplicative.
- Again we have:

Introduction 00	G-bispaces	Crossed-modules 00000	(H,G)-bispaces ••	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
(H,G)-	bispace	S			

Definition 16 (Breen)

Let (H, G) be a crossed module. An (H, G)-bispace is a pair (X, ψ) consisting of a right *G*-space *X* and an equivariant map $\psi : X \to H$.

- We call ψ the structure map again.
- Equivariance means $\psi(xg) = \psi(x)t(g)$ and hence defines the type of X which is now an element in H/t(G). This is a group because t(G) is normal.
- There is a dual and a product which are a little trickier to define. Again the type map is multiplicative.
- Again we have:

Introduction 00	G-bispaces	Crossed-modules 00000	(H,G)-bispaces ••	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
(H,G)-	bispace	S			

Definition 16 (Breen)

Let (H, G) be a crossed module. An (H, G)-bispace is a pair (X, ψ) consisting of a right *G*-space *X* and an equivariant map $\psi : X \to H$.

- We call ψ the structure map again.
- Equivariance means $\psi(xg) = \psi(x)t(g)$ and hence defines the type of X which is now an element in H/t(G). This is a group because t(G) is normal.
- There is a dual and a product which are a little trickier to define. Again the type map is multiplicative.
- Again we have:

Introduction 00	G-bispaces	Crossed-modules 00000	(H,G)-bispaces ••	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
(H,G)-	bispace	S			

Definition 16 (Breen)

Let (H, G) be a crossed module. An (H, G)-bispace is a pair (X, ψ) consisting of a right *G*-space *X* and an equivariant map $\psi : X \to H$.

- We call ψ the structure map again.
- Equivariance means $\psi(xg) = \psi(x)t(g)$ and hence defines the type of X which is now an element in H/t(G). This is a group because t(G) is normal.
- There is a dual and a product which are a little trickier to define. Again the type map is multiplicative.
- Again we have:

Introduction	G-bispaces 000000	Crossed-modules	(H,G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory

Proposition 17

The isomorphism classes of (H, G)-bispaces are in bijective correspondence with H/t(G) via the type map

Type: $\operatorname{Bisp}_{(H,G)} \to H/t(G)$

Introduction	G-bispaces 000000	Crossed-modules	(H,G)-bispaces	(H,G)-bibundles ●000000	Classifying theory
(H,G)-	bibundl	es			

It is now simple to generalise to bibundles.

Definition 18

Let (H, G) be a crossed module. An (H, G)-bibundle is a (right) principal *G*-bundle with an equivariant map $\psi : P \to H$.

- Each fibre of $P \rightarrow M$ is an (H, G)-bispace.
- They may not be isomorphic as (*H*, *G*)-bispaces!
- The structure map descends to give a commuting diagram:

$$\begin{array}{cccc} P & \stackrel{\psi}{\longrightarrow} & H \\ \downarrow & & \downarrow \\ M & \stackrel{\phi}{\longrightarrow} & H/t(G) \end{array}$$

and we call $\phi: M \to H/t(G)$ the type or type map of $P \to M$.

- The value $\phi(m)$ tells you the isomorphism class of the fibre of $P \rightarrow M$ at m.
- Notice that two (*H*, *G*)-bibundles which have different type maps cannot be isomorphic.

Introduction	G-bispaces 000000	Crossed-modules	(H,G)-bispaces	(H,G)-bibundles ●000000	Classifying theory
(H,G)-	bibundl	es			

It is now simple to generalise to bibundles.

Definition 18

Let (H, G) be a crossed module. An (H, G)-bibundle is a (right) principal *G*-bundle with an equivariant map $\psi : P \to H$.

- Each fibre of $P \rightarrow M$ is an (H, G)-bispace.
- They may not be isomorphic as (*H*, *G*)-bispaces!
- The structure map descends to give a commuting diagram:

$$\begin{array}{cccc} P & \stackrel{\psi}{\longrightarrow} & H \\ \downarrow & & \downarrow \\ M & \stackrel{\phi}{\longrightarrow} & H/t(G \end{array}$$

and we call $\phi: M \to H/t(G)$ the type or type map of $P \to M$.

- The value $\phi(m)$ tells you the isomorphism class of the fibre of $P \rightarrow M$ at m.
- Notice that two (*H*, *G*)-bibundles which have different type maps cannot be isomorphic.

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H,G)-bibundles ●000000	Classifying theory
(H C)	hihundl	<u>م</u>			

It is now simple to generalise to bibundles.

Definition 18

Let (H, G) be a crossed module. An (H, G)-bibundle is a (right) principal *G*-bundle with an equivariant map $\psi : P \to H$.

- Each fibre of $P \rightarrow M$ is an (H, G)-bispace.
- They may not be isomorphic as (*H*, *G*)-bispaces!
- The structure map descends to give a commuting diagram:

$$\begin{array}{cccc} P & \stackrel{\psi}{\longrightarrow} & H \\ \downarrow & & \downarrow \\ M & \stackrel{\phi}{\longrightarrow} & H/t(G) \end{array}$$

and we call $\phi: M \to H/t(G)$ the type or type map of $P \to M$.

- The value $\phi(m)$ tells you the isomorphism class of the fibre of $P \rightarrow M$ at m.
- Notice that two (*H*, *G*)-bibundles which have different type maps cannot be isomorphic.

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H,G)-bibundles ⊙●○○○○○	Classifying theory
Fxamn	les				

A *G*-bundle is the same thing as an (Aut(G), G)-bibundle. The type map takes values in Out(G).

Example 20

If A is abelian then an A-bundle is the same thing as a (1, A)-bundle where we just define the structure map $\psi: P \to 1$ in the unique way.

Example 21

If G is normal in H then $H \rightarrow H/G$ is a G-bundle and the identity map $H \rightarrow H$ makes it an (H, G)-bibundle.

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H,G)-bibundles ⊙●○○○○○	Classifying theory
Fxamn	les				

A *G*-bundle is the same thing as an (Aut(G), G)-bibundle. The type map takes values in Out(G).

Example 20

If A is abelian then an A-bundle is the same thing as a (1, A)-bundle where we just define the structure map $\psi : P \to 1$ in the unique way.

Example 21

If G is normal in H then $H \rightarrow H/G$ is a G-bundle and the identity map $H \rightarrow H$ makes it an (H, G)-bibundle.

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H,G)-bibundles ⊙●○○○○○	Classifying theory
Fxamn	les				

A *G*-bundle is the same thing as an (Aut(G), G)-bibundle. The type map takes values in Out(G).

Example 20

If A is abelian then an A-bundle is the same thing as a (1, A)-bundle where we just define the structure map $\psi : P \to 1$ in the unique way.

Example 21

If G is normal in H then $H \rightarrow H/G$ is a G-bundle and the identity map $H \rightarrow H$ makes it an (H, G)-bibundle.

Introduction	G-bispaces	Crossed-modules	(H, G)-bispaces	(H,G)-bibundles	Classifying theory
				000000	

If $\rho: M \to \operatorname{Aut}(G)$ we define $T(\rho)$ by making the fibre at m the $(\operatorname{Aut}(G), G)$ -bispace $T(\rho(m))$. The type map is $\phi(m) = [\rho(m)]$ the image of $\rho(m) \in \operatorname{Aut}(G)$ in $\operatorname{Out}(G)$.

Example 23

The trivial (H, G)-bibundle over M is $P = G \times M$ with the structure map being the projection to G composed with $t: G \rightarrow H$.

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H, G)-bibundles	Classifying theory
				000000	

If $\rho: M \to \operatorname{Aut}(G)$ we define $T(\rho)$ by making the fibre at m the $(\operatorname{Aut}(G), G)$ -bispace $T(\rho(m))$. The type map is $\phi(m) = [\rho(m)]$ the image of $\rho(m) \in \operatorname{Aut}(G)$ in $\operatorname{Out}(G)$.

Example 23

The trivial (H, G)-bibundle over M is $P = G \times M$ with the structure map being the projection to G composed with $t: G \rightarrow H$.

- Because t(G) is normal in H we have that $H \rightarrow H/t(G)$ is a $(H, t(G) = G/G_1)$ bibundle.
- If we quotient *P* by G_1 we obtain a $G/G_1 = t(G)$ -bundle. The structure map descends to $\psi: P/G_1 \to H$ and also defines an (H, t(G))-bibundle.
- These two (*H*, *t*(*G*))-bibundles are isomorphic because of

$$\begin{array}{cccc} P/G_1 & \stackrel{\psi}{\longrightarrow} & H \\ \downarrow & & \downarrow \\ M & \stackrel{\phi}{\longrightarrow} & H/t(G) \end{array}$$

Lemma 24

If $G_1 = 1$ then $P \rightarrow M$ is the pull-back of $H \rightarrow H/t(G)$ by the type map.

- Because t(G) is normal in H we have that $H \rightarrow H/t(G)$ is a $(H, t(G) = G/G_1)$ bibundle.
- If we quotient *P* by G_1 we obtain a $G/G_1 = t(G)$ -bundle. The structure map descends to $\psi: P/G_1 \to H$ and also defines an (H, t(G))-bibundle.
- These two (*H*, *t*(*G*))-bibundles are isomorphic because of

$$\begin{array}{cccc} P/G_1 & \stackrel{\psi}{\longrightarrow} & H\\ \downarrow & & \downarrow\\ M & \stackrel{\phi}{\longrightarrow} & H/t(G) \end{array}$$

Lemma 24

If $G_1 = 1$ then $P \to M$ is the pull-back of $H \to H/t(G)$ by the type map.

Products and duals and the type map

- We can define the product and dual of two (*H*, *G*)-bibundles fibrewise.
- If $\operatorname{Bibun}_{(H,G)}(M)$ is the set of all (H,G)-bibundles on M we let

Type: $\operatorname{Bibun}_{(H,G)}(M) \to \operatorname{Map}(M, H/t(G))$

be the map sending $P \rightarrow M$ to its type map $\phi: M \rightarrow H/t(G)$.

_emma 25

1 Type $(P \otimes Q)$ = Type(P) Type(Q)

2 Type
$$(P^*) = (Type(P)^{-1}).$$

Products and duals and the type map

- We can define the product and dual of two (*H*, *G*)-bibundles fibrewise.
- If $\operatorname{Bibun}_{(H,G)}(M)$ is the set of all (H,G)-bibundles on M we let

Type: $\operatorname{Bibun}_{(H,G)}(M) \to \operatorname{Map}(M, H/t(G))$

be the map sending $P \rightarrow M$ to its type map $\phi: M \rightarrow H/t(G)$.

Lemma 25

1 Type
$$(P \otimes Q)$$
 = Type (P) Type (Q)

2 Type
$$(P^*) = (Type(P)^{-1}).$$

• If $(H,G) \rightarrow (H',G')$ is a morphism of crossed modules applying the bispace construction pointwise gives a map

 $\operatorname{Bibun}_{(H,G)}(M) \to \operatorname{Bibun}_{(H',G')}(M).$

which preserves products and duals.

- In particular as G_1 is abelian we have the morphism of crossed modules $(1, G_1) \rightarrow (H, G)$ defined by the obvious inclusions.
- Combining with the type map gives a sequence (of pointed sets):

 $\operatorname{Bun}_{G_1}(M) = \operatorname{Bibun}_{(1,G_1)}(M) \xrightarrow{\iota} \operatorname{Bibun}_{(H,G)}(M) \xrightarrow{\operatorname{Type}} \operatorname{Map}(M, H/t(G))$

Proposition 26

• If $(H,G) \rightarrow (H',G')$ is a morphism of crossed modules applying the bispace construction pointwise gives a map

 $\operatorname{Bibun}_{(H,G)}(M) \to \operatorname{Bibun}_{(H',G')}(M).$

which preserves products and duals.

- In particular as G_1 is abelian we have the morphism of crossed modules $(1, G_1) \rightarrow (H, G)$ defined by the obvious inclusions.
- Combining with the type map gives a sequence (of pointed sets):

 $\operatorname{Bun}_{G_1}(M) = \operatorname{Bibun}_{(1,G_1)}(M) \xrightarrow{\iota} \operatorname{Bibun}_{(H,G)}(M) \xrightarrow{\operatorname{Type}} \operatorname{Map}(M, H/t(G))$

Proposition 26

• If $(H,G) \rightarrow (H',G')$ is a morphism of crossed modules applying the bispace construction pointwise gives a map

 $\operatorname{Bibun}_{(H,G)}(M) \to \operatorname{Bibun}_{(H',G')}(M).$

which preserves products and duals.

- In particular as G_1 is abelian we have the morphism of crossed modules $(1, G_1) \rightarrow (H, G)$ defined by the obvious inclusions.
- Combining with the type map gives a sequence (of pointed sets):

 $\operatorname{Bun}_{G_1}(M) = \operatorname{Bibun}_{(1,G_1)}(M) \xrightarrow{\iota} \operatorname{Bibun}_{(H,G)}(M) \xrightarrow{\operatorname{Type}} \operatorname{Map}(M, H/t(G))$

Proposition 26

• If $(H,G) \rightarrow (H',G')$ is a morphism of crossed modules applying the bispace construction pointwise gives a map

 $\operatorname{Bibun}_{(H,G)}(M) \to \operatorname{Bibun}_{(H',G')}(M).$

which preserves products and duals.

- In particular as G_1 is abelian we have the morphism of crossed modules $(1, G_1) \rightarrow (H, G)$ defined by the obvious inclusions.
- Combining with the type map gives a sequence (of pointed sets):

 $\operatorname{Bun}_{G_1}(M) = \operatorname{Bibun}_{(1,G_1)}(M) \xrightarrow{\iota} \operatorname{Bibun}_{(H,G)}(M) \xrightarrow{\operatorname{Type}} \operatorname{Map}(M, H/t(G))$

Proposition 26

• If $(H,G) \rightarrow (H',G')$ is a morphism of crossed modules applying the bispace construction pointwise gives a map

 $\operatorname{Bibun}_{(H,G)}(M) \to \operatorname{Bibun}_{(H',G')}(M).$

which preserves products and duals.

- In particular as G_1 is abelian we have the morphism of crossed modules $(1, G_1) \rightarrow (H, G)$ defined by the obvious inclusions.
- Combining with the type map gives a sequence (of pointed sets):

 $\operatorname{Bun}_{G_1}(M) = \operatorname{Bibun}_{(1,G_1)}(M) \xrightarrow{\iota} \operatorname{Bibun}_{(H,G)}(M) \xrightarrow{\operatorname{Type}} \operatorname{Map}(M, H/t(G))$

Proposition 26

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H,G)-bibundles	Classifying theory
				000000	

• Consider the case of *G*-bundles for *G* simple, simply connected and compact. Then we have

 $\operatorname{Bun}_{Z(G)}(M) \xrightarrow{\iota} \operatorname{Bibun}_{G}(M) \xrightarrow{\operatorname{Type}} \operatorname{Map}(M, \operatorname{Out}(G))$

In this case Out(G) is the group of automorphisms of the Dynkin diagram: a finite group. It follows that φ: M → Out(G) lifts to φ̂: M → Aut(G).

Proposition 27

Any *G*-bibundle for *G* compact, simple, simply connected is of the form $R \otimes T(\hat{\phi})$ for *R* a *Z*(*G*)-bundle.

Moral

To get 'interesting' bibundles, i.e. those which aren't really abelian bundles in disguise, we need to use groups which have large groups of automorphisms; such as the loop group.

• Consider the case of *G*-bundles for *G* simple, simply connected and compact. Then we have

 $\operatorname{Bun}_{Z(G)}(M) \xrightarrow{\iota} \operatorname{Bibun}_{G}(M) \xrightarrow{\operatorname{Type}} \operatorname{Map}(M, \operatorname{Out}(G))$

• In this case Out(G) is the group of automorphisms of the Dynkin diagram: a finite group. It follows that $\phi: M \to Out(G)$ lifts to $\hat{\phi}: M \to Aut(G)$.

Proposition 27

Any *G*-bibundle for *G* compact, simple, simply connected is of the form $R \otimes T(\hat{\phi})$ for *R* a *Z*(*G*)-bundle.

Moral

To get 'interesting' bibundles, i.e. those which aren't really abelian bundles in disguise, we need to use groups which have large groups of automorphisms; such as the loop group.

• Consider the case of *G*-bundles for *G* simple, simply connected and compact. Then we have

 $\operatorname{Bun}_{Z(G)}(M) \xrightarrow{\iota} \operatorname{Bibun}_{G}(M) \xrightarrow{\operatorname{Type}} \operatorname{Map}(M, \operatorname{Out}(G))$

• In this case Out(G) is the group of automorphisms of the Dynkin diagram: a finite group. It follows that $\phi: M \to Out(G)$ lifts to $\hat{\phi}: M \to Aut(G)$.

Proposition 27

Any *G*-bibundle for *G* compact, simple, simply connected is of the form $R \otimes T(\hat{\phi})$ for *R* a *Z*(*G*)-bundle.

Moral

To get 'interesting' bibundles, i.e. those which aren't really abelian bundles in disguise, we need to use groups which have large groups of automorphisms; such as the loop group.

Classifying theory for *G*-bundles

- Recall that there is a universal *G*-bundle $EG \rightarrow BG$, unique up to homotopy equivalence, with the property that for any *G*-bundle *P* there is a classifying map $f: M \rightarrow BG$ such that $P \simeq f^*(EG)$.
- The classifying map is unique up to homotopy.
- We want a similar result for (H, G)-bibundles.
- Notice first that if $P \to M$ is a bibundle and $f: N \to M$ then $f^*P \to N$ is a bibundle:

• The structure map of f^*P is $\psi \circ \hat{f}$ and the type map is $\phi \circ f$.

Classifying theory for *G*-bundles

- Recall that there is a universal *G*-bundle $EG \rightarrow BG$, unique up to homotopy equivalence, with the property that for any *G*-bundle *P* there is a classifying map $f: M \rightarrow BG$ such that $P \simeq f^*(EG)$.
- The classifying map is unique up to homotopy.
- We want a similar result for (H, G)-bibundles.
- Notice first that if $P \to M$ is a bibundle and $f: N \to M$ then $f^*P \to N$ is a bibundle:

• The structure map of f^*P is $\psi \circ \hat{f}$ and the type map is $\phi \circ f$.

- Recall that there is a universal *G*-bundle $EG \rightarrow BG$, unique up to homotopy equivalence, with the property that for any *G*-bundle *P* there is a classifying map $f: M \rightarrow BG$ such that $P \simeq f^*(EG)$.
- The classifying map is unique up to homotopy.
- We want a similar result for (*H*, *G*)-bibundles.
- Notice first that if $P \to M$ is a bibundle and $f: N \to M$ then $f^*P \to N$ is a bibundle:

• The structure map of f^*P is $\psi \circ \hat{f}$ and the type map is $\phi \circ f$.

IntroductionG-bispacesCrossed-modules(H, G)-bispaces(H, G)-bibundlesClassifying theory00000000000000000000000000

The bundle of bibundle structures

- The structure map $\psi : P \to H$ is equivalent to a section of $P \times_G H \to M$ where G acts by (p, h)g = (pg, ht(g)).
- In fact, given a *G*-bundle $P \rightarrow M$ the possible (H, G)-bibundle structures on it are the sections of $P \times_G H \rightarrow M$.
- One way to see this is to note that $P \times H \to P \times_G H$ is a *G*-bundle and the projection $P \times H \to H$ is a structure map making $P \times H \to P \times_G H$ into a (H, G)-bibundle.
- Any section ψ of $P \times_G H$ pulls back $P \times H$ and this is naturally identified with $P \to M$ and induces the bibundle structure defined by ψ .

$$\begin{array}{cccc} P & \stackrel{(\mathrm{id},\psi)}{\to} & P \times H & \to & H \\ \downarrow & & \downarrow & & \downarrow \\ M & \stackrel{\psi}{\to} & P \times_G H & \to & H/t(G) \end{array}$$

IntroductionG-bispacesCrossed-modules(H, G)-bispaces(H, G)-bibundlesClassifying theory00000000000000000000000000

The bundle of bibundle structures

- The structure map $\psi : P \to H$ is equivalent to a section of $P \times_G H \to M$ where G acts by (p, h)g = (pg, ht(g)).
- In fact, given a *G*-bundle $P \rightarrow M$ the possible (H, G)-bibundle structures on it are the sections of $P \times_G H \rightarrow M$.
- One way to see this is to note that $P \times H \to P \times_G H$ is a *G*-bundle and the projection $P \times H \to H$ is a structure map making $P \times H \to P \times_G H$ into a (H, G)-bibundle.
- Any section ψ of $P \times_G H$ pulls back $P \times H$ and this is naturally identified with $P \to M$ and induces the bibundle structure defined by ψ .

$$\begin{array}{ccccc} P & \stackrel{(\mathrm{id},\psi)}{\to} & P \times H & \to & H \\ \downarrow & & \downarrow & & \downarrow \\ M & \stackrel{\psi}{\to} & P \times_G H & \to & H/t(G) \end{array}$$

• The structure map $\psi: P \to H$ is equivalent to a section of $P \times_G H \to M$ where G acts by (p,h)g = (pg,ht(g)).

- In fact, given a *G*-bundle $P \rightarrow M$ the possible (H, G)-bibundle structures on it are the sections of $P \times_G H \rightarrow M$.
- One way to see this is to note that $P \times H \to P \times_G H$ is a *G*-bundle and the projection $P \times H \to H$ is a structure map making $P \times H \to P \times_G H$ into a (H, G)-bibundle.
- Any section ψ of $P \times_G H$ pulls back $P \times H$ and this is naturally identified with $P \to M$ and induces the bibundle structure defined by ψ .

$$\begin{array}{cccc} P & \stackrel{(\mathrm{id},\psi)}{\to} & P \times H & \to & H \\ \downarrow & & \downarrow & & \downarrow \\ M & \stackrel{\psi}{\to} & P \times_G H & \to & H/t(G) \end{array}$$

Introduction
 $\circ\circ$ *G*-bispaces
 $\circ\circ\circ\circ\circ\circ$ Crossed-modules
 $\circ\circ\circ\circ\circ\circ$ (*H*, *G*)-bispaces
 $\circ\circ\circ\circ\circ\circ\circ$ (*H*, *G*)-bibundles
 $\circ\circ\circ\circ\circ\circ\circ\circ$ Classifying theory
 $\circ\circ\circ\circ\circ\circ\circ$ The second sec

The bundle of bibundle structures

- The structure map $\psi : P \to H$ is equivalent to a section of $P \times_G H \to M$ where G acts by (p, h)g = (pg, ht(g)).
- In fact, given a *G*-bundle $P \rightarrow M$ the possible (H, G)-bibundle structures on it are the sections of $P \times_G H \rightarrow M$.
- One way to see this is to note that $P \times H \rightarrow P \times_G H$ is a *G*-bundle and the projection $P \times H \rightarrow H$ is a structure map making $P \times H \rightarrow P \times_G H$ into a (H, G)-bibundle.
- Any section ψ of $P \times_G H$ pulls back $P \times H$ and this is naturally identified with $P \to M$ and induces the bibundle structure defined by ψ .

$$\begin{array}{cccc} P & \stackrel{(\mathrm{id},\psi)}{\to} & P \times H & \to & H \\ \downarrow & & \downarrow & & \downarrow \\ M & \stackrel{\psi}{\to} & P \times_G H & \to & H/t(G) \end{array}$$

Introduction
 $\circ\circ$ *G*-bispaces
 $\circ\circ\circ\circ\circ\circ$ Crossed-modules
 $\circ\circ\circ\circ\circ\circ$ (*H*, *G*)-bispaces
 $\circ\circ\circ\circ\circ\circ\circ$ (*H*, *G*)-bibundles
 $\circ\circ\circ\circ\circ\circ\circ\circ$ Classifying theory
 $\circ\circ\circ\circ\circ\circ\circ$ The second sec

The bundle of bibundle structures

- The structure map $\psi : P \to H$ is equivalent to a section of $P \times_G H \to M$ where *G* acts by (p, h)g = (pg, ht(g)).
- In fact, given a *G*-bundle $P \rightarrow M$ the possible (H, G)-bibundle structures on it are the sections of $P \times_G H \rightarrow M$.
- One way to see this is to note that $P \times H \rightarrow P \times_G H$ is a *G*-bundle and the projection $P \times H \rightarrow H$ is a structure map making $P \times H \rightarrow P \times_G H$ into a (H, G)-bibundle.
- Any section ψ of $P \times_G H$ pulls back $P \times H$ and this is naturally identified with $P \to M$ and induces the bibundle structure defined by ψ .

$$\begin{array}{cccc} P & \stackrel{(\mathrm{id},\psi)}{\to} & P \times H & \to & H \\ \downarrow & & \downarrow & & \downarrow \\ M & \stackrel{\psi}{\to} & P \times_G H & \to & H/t(G) \end{array}$$

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(<i>H</i> , <i>G</i>)-bibundles	Classifying theory
Thour	iversal	aibundla			

- Apply the construction above to $EG \rightarrow BG$ and denote $E(H,G) = EG \times H$ and $B(H,G) = EG \times_G H$.
- This gives the universal bibundle

$$\begin{array}{cccc} E(H,G) & \stackrel{\Psi}{\to} & H \\ \downarrow & & \downarrow \\ B(H,G) & \stackrel{\Phi}{\to} & H/t(G) \end{array}$$

where Ψ is the projection from $E(H, G) = EG \times H$ onto H.

Introduction	G-bispaces	Crossed-modules	(H, G)-bispaces	(H, G)-bibundles	Classifying theory
					000000

$$\begin{array}{cccc} P & \stackrel{\hat{f}}{\rightarrow} & EG \\ \downarrow & & \downarrow \\ M & \stackrel{f}{\rightarrow} & BG \end{array}$$

• The pair $\hat{F} = (\hat{f}, \psi) : P \to EG \times H = E(H, G)$ is *G*-equivariant and descends to a map $F : M \to B(H, G)$ giving us

$$\begin{array}{cccc} P & \stackrel{\bar{F}}{\to} & E(H,G) & \stackrel{\Psi}{\to} & H \\ \downarrow & & \downarrow & & \downarrow \\ M & \stackrel{F}{\to} & B(H,G) & \stackrel{\Phi}{\to} & H/t(G) \end{array}$$

Lemma 28

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H, G)-bibundles	Classifying theory
					000000

$$\begin{array}{cccc} P & \stackrel{\hat{f}}{\rightarrow} & EG \\ \downarrow & & \downarrow \\ M & \stackrel{f}{\rightarrow} & BG \end{array}$$

• The pair $\hat{F} = (\hat{f}, \psi) : P \to EG \times H = E(H, G)$ is *G*-equivariant and descends to a map $F : M \to B(H, G)$ giving us

$$\begin{array}{cccc} P & \stackrel{\bar{F}}{\to} & E(H,G) & \stackrel{\Psi}{\to} & H \\ \downarrow & & \downarrow & & \downarrow \\ M & \stackrel{F}{\to} & B(H,G) & \stackrel{\Phi}{\to} & H/t(G) \end{array}$$

Lemma 28

Introduction	G-bispaces	Crossed-modules	(H, G)-bispaces	(H, G)-bibundles	Classifying theory
					000000

$$\begin{array}{cccc} P & \stackrel{\hat{f}}{\rightarrow} & EG \\ \downarrow & & \downarrow \\ M & \stackrel{f}{\rightarrow} & BG \end{array}$$

• The pair $\hat{F} = (\hat{f}, \psi) : P \to EG \times H = E(H, G)$ is *G*-equivariant and descends to a map $F : M \to B(H, G)$ giving us

$$\begin{array}{cccc} P & \stackrel{\hat{F}}{\rightarrow} & E(H,G) & \stackrel{\Psi}{\rightarrow} & H \\ \downarrow & & \downarrow & & \downarrow \\ M & \stackrel{F}{\rightarrow} & B(H,G) & \stackrel{\Phi}{\rightarrow} & H/t(G) \end{array}$$

Lemma 28

Introduction	G-bispaces	Crossed-modules	(H, G)-bispaces	(H, G)-bibundles	Classifying theory
					000000

$$\begin{array}{cccc} P & \stackrel{\hat{f}}{\rightarrow} & EG \\ \downarrow & & \downarrow \\ M & \stackrel{f}{\rightarrow} & BG \end{array}$$

• The pair $\hat{F} = (\hat{f}, \psi) : P \to EG \times H = E(H, G)$ is *G*-equivariant and descends to a map $F : M \to B(H, G)$ giving us

$$\begin{array}{ccccc} P & \stackrel{\hat{F}}{\to} & E(H,G) & \stackrel{\Psi}{\to} & H \\ \downarrow & & \downarrow & & \downarrow \\ M & \stackrel{F}{\to} & B(H,G) & \stackrel{\Phi}{\to} & H/t(G) \end{array}$$

Lemma 28

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H, G)-bibundles	Classifying theory
					000000

- We say that $F, F': M \to B(H, G)$ are Φ -homotopic if $\Phi \circ F = \Phi \circ F'$ and we can homotopy one to the other with a homotopy H_t such that $\Phi \circ H_t$ is constant.
- Denote by $[M, B(H, G)]_{\Phi}$ the resulting Φ -homotopy classes.

Proposition 29

```
The classifying map of P \rightarrow M is unique up to \Phi-homotopy. Pull-back defines a bijection
```

```
[M, B(H, G)]_{\Phi} \rightarrow \operatorname{IBibun}_{(H,G)}(M)
```

where $\operatorname{IBibun}_{(H,G)}(M)$ denotes the set of all isomorphism classes of (H, G)-bibundles.

- The product and dual of bibundles makes $\operatorname{IBibun}_{(H,G)}(M)$ into a group.
- It is possible to make *B*(*H*, *G*) into a group so that the bijection above is an isomorphism of groups.

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H, G)-bibundles	Classifying theory
					000000

- We say that $F, F' : M \to B(H, G)$ are Φ -homotopic if $\Phi \circ F = \Phi \circ F'$ and we can homotopy one to the other with a homotopy H_t such that $\Phi \circ H_t$ is constant.
- Denote by $[M, B(H, G)]_{\Phi}$ the resulting Φ -homotopy classes.

Proposition 29

The classifying map of $P \rightarrow M$ is unique up to Φ -homotopy. Pull-back defines a bijection

 $[M, B(H, G)]_{\Phi} \rightarrow \operatorname{IBibun}_{(H,G)}(M)$

where $\operatorname{IBibun}_{(H,G)}(M)$ denotes the set of all isomorphism classes of (H, G)-bibundles.

- The product and dual of bibundles makes $\operatorname{IBibun}_{(H,G)}(M)$ into a group.
- It is possible to make *B*(*H*, *G*) into a group so that the bijection above is an isomorphism of groups.

Introduction	G-bispaces	Crossed-modules	(H,G)-bispaces	(H, G)-bibundles	Classifying theory
					000000

- We say that $F, F': M \to B(H, G)$ are Φ -homotopic if $\Phi \circ F = \Phi \circ F'$ and we can homotopy one to the other with a homotopy H_t such that $\Phi \circ H_t$ is constant.
- Denote by $[M, B(H, G)]_{\Phi}$ the resulting Φ -homotopy classes.

Proposition 29

The classifying map of $P \rightarrow M$ is unique up to Φ -homotopy. Pull-back defines a bijection

 $[M, B(H, G)]_{\Phi} \to \operatorname{IBibun}_{(H,G)}(M)$

where $\operatorname{IBibun}_{(H,G)}(M)$ denotes the set of all isomorphism classes of (H, G)-bibundles.

- The product and dual of bibundles makes $\operatorname{IBibun}_{(H,G)}(M)$ into a group.
- It is possible to make *B*(*H*, *G*) into a group so that the bijection above is an isomorphism of groups.

ntroduction (

Crossec 00000

ed-modules

(H, G)-bispace

(*H*, *G*)-bibundles

Classifying theory ○○○○○●

