
1

Homotopy Type Theory MPIM-Bonn 2016

Dependent Type Theories

Lecture 2. Lawvere theories and C-systems.

By Vladimir Voevodsky

from Institute for Advanced Study in Princeton, NJ.

February, 2016



Examples from the last lecture 2

1. The trivial C-systems are the C-systems with only one object ptCC
and only the identity morphism from ptCC to ptCC.

Our choice of a one element set allows us to speak about the trivial
C-system and we call it by the same name as the one element set.

2. The almost trivial C-system. It is the C-system whose underlying
category is the category Ntriv with the set of objects being the set N of
natural numbers and the set of morphisms being the set N×N so that
there is exactly one morphism between any two objects.

The length function is the identity. All other structures are uniquely
determined by the axioms.



l-bijective C-systems and the plan for the lecture 3

The second of the C-systems on the previous slide belongs to a class of
C-systems that are called l-bijective C-systems.

Definition 1 A l-bijective C-system is a C-system such that the
length function Ob(CC)→ N is a bijection.

Today we will define Lawvere theories, construct the category of Law-
vere theories in U , construct the category of C-systems in U and then
construct an isomorphism between the category of Lawvere theories in U
and the full subcategory in the category of C-systems in U that consists
of l-bijective C-systems.



Category F 4

For m ∈ N we choose as our standard set with m elements the set

stn(m) = {i ∈ N | 0 ≤ i < m}

Let

Ob(F ) = N

and

Mor(F ) = ∪n,m∈NFun(stn(n), stn(m))

where Fun(X, Y ) is the set of functions from X to Y .



Category F 5

We use the definition of a function given on p.81 of the “Theory of sets”
by N.Bourbaki where a function f from X to Y is defined as a triple
(X, Y,G) where G is a subset in X ×Y satisfying the usual conditions.

Because of this choice of the definition every function has a well defined
domain and codomain. This makes it possible to define a category F
with the set of objects Ob(F ) and the set of morphisms Mor(F ) such
that for each n and m the set

F (m,n) := {f ∈Mor(F ) | dom(f ) = m and codom(f ) = n}

equals to Fun(stn(m), stn(n)) and composition, when restricted to
these subsets, is the composition of functions.



Category F 6

For m,n ∈ N let

iim,n0 : stn(m)→ stn(m + n)

and
iim,n1 : stn(n)→ stn(m + n)

be the injections of the initial segment of length m and the concluding
segment of length n.



Lawvere theory structures and Lawvere theories 7

Definition 2 A Lawvere theory structure on a category T is a func-
tor L : F → T such that the following conditions hold:

1. L is a bijection on the sets of objects,

2. L(0) is an initial object of T ,

3. for any m,n ∈ N the square

L(0) −→ L(n)

↓ ↓L(iim,n1 )

L(m)
L(ii

m,n
0 )

−−−−→ L(m + n)

is a push-out square.

A Lawvere theory is a pair (T, L) where T is a category and L is a
Lawvere theory structure on T .



Lawvere theory structures and Lawvere theories 8

This definition is equivalent, in the strict sense, to the definition given by
Lawvere in the 2004 “reprint” of his 1963 Ph.D. thesis where he called
the objects that we have just defined “algebraic theories”.



The category LW (U) of Lawvere theories in U 9

Problem 3 To construct the category LW (U) of Lawvere theories
in U .

Construction 4 Following Lawvere we define a morphism from a Law-
vere theory T1 = (T1, L1) to a Lawvere theory T2 = (T2, L2) as a
functor G : T1 → T2 such that L1 ◦G = L2.

Note that here one uses the equality rather than isomorphism of functors.

We let HomLW (T1,T2) denote the subset in the set of functors from
T1 to T2 that are morphisms of Lawvere theories.

The composition of morphisms is defined as composition of functors.
The identity morphism is the identity functor. The associativity and the
left and right unity axioms follow immediately from the corresponding
properties of the composition of functors.



The category LW (U) of Lawvere theories in U 10

We let Ob(LW (U)) denote the set of Lawvere theories in U and let

Mor(LW (U)) =
∐

T1,T2∈Ob(LW (U))

HomLW (T1,T2)

Together with the obvious domain, codomain, identity and composition
functions the pair of sets Ob(LW (U)) and Mor(LW (U)) forms a cat-
egory that we denote LW (U) and call the category of Lawvere theories
in U .



Standard problem when constructing categories in the ZF 11

Now we have to deal with the main problem that I encountered trying
to do categorical constructions carefully in the ZF.

Note that with our definition a morphism from T1 to T2 in the cate-
gory of Lawvere theories is not a morphism of Lawvere theories but an
iterated pair ((T1,T2), G) where G is a morphism of Lawvere theories.

In fact, it is easy to prove that there is no category whose set of objects
is the set of Lawvere theories in U and such that for any T1, T2 the set
of morphisms with the domain T1 and the codomain T2 in this category
equals to the set HomLW (T1,T2).



Standard problem when constructing categories in the ZF 12

Indeed, consider the identity morphisms of Lawvere theories. Then for
T1, T2 we have IdT1 = IdT2 if T1 = T2. But there are non-equal
Lawvere theories with the same underlying categories and therefore there
is no domain function dom such that dom(IdT) = T.

This problem is not particular to Lawvere theories and one encounters
it almost always when one tries to construct a category from a given
family of morphism sets.

The fact that it could be done for F and can be done for the category
Sets(U) of sets in U is due to our choice of the definition of a function
between two sets. If we chose the definition where a function is the
same as its graph we would not be able to have a category whose set of
morphisms between two sets is the set of functions between these two
sets.



Coercions as a notational solution to such problems 13

Coming back to Lawvere theories consider the obvious bijection

MorLW (U)(T1,T2)→ HomLW (T1,T2)

We will use the functions in both directions given by this bijection as
coercions, in the terminology of the computer proof assistants. That is,
every time we have an expression which denotes an element of one of
these sets in a position where an element of the other is expected it is
assumed to be replaced by its image under the corresponding function.

This completes the construction of the category of Lawvere theories in
U .



Homomorphisms of C-systems 14

Next we will define homomorphisms of C-systems and the category of
C-systems in U .

Definition 5 Let CC1, CC2 be C-systems. A homomorphism F
from CC1 to CC2 is a pair of functions FOb : Ob(CC1)→ Ob(CC2),
FMor : Mor(CC1)→Mor(CC2) such that:

1. FOb commutes with the length functions, i.e., for all X ∈ Ob(CC1)
one has

l(FOb(X)) = l(X),

2. FOb commutes with the ft function, i.e., for all X ∈ Ob(CC1)
one has

ft(FOb(X)) = FOb(ft(X)),

3. F is a functor,



Homomorphisms of C-systems 15

4. F takes p-morphisms to p-morphisms, i.e., for all X ∈ Ob(CC1)
one has

pFOb(X) = FMor(pX),

5. F takes q-morphisms to q-morphisms, i.e., for all X, Y ∈ Ob(CC1)
such that l(Y ) > 0 and all f : X → ft(Y ) one has

FMor(q(f, Y )) = q(FMor(f ), FOb(Y )),

6. F takes s-morphisms to s-morphisms, i.e., for all X, Y ∈ Ob(CC1)
such that l(Y ) > 0 and f : X → Y one has

sFMor(f) = FMor(sf).



Homomorphisms of C-systems 16

In what follows we will write F for both FOb and FMor since the choice
of which one is meant is determined by the type of the argument. Note
that the condition that F commutes with the domain function together
with the q-morphism condition implies that for all X, Y ∈ Ob(CC1)
such that l(Y ) > 0 and all f : X → ft(Y ) one has

F (f ∗(Y )) = F (f )∗(F (Y )) (1)



Homomorphisms of C-systems 17

Lemma 6 Let F : CC1 → CC2 and G : CC2 → CC3 be homomor-
phisms of C-systems. Then the compositions of functions FOb ◦GOb

and FMor ◦GMor is a homomorphism of C-systems.

The proof is straightforward but when written up it is a relatively long
proof since many conditions need to be verified.



Homomorphisms of C-systems 18

Lemma 7 Let CC1, CC2, Fob and FMor be as above. Assume fur-
ther that these data satisfies all of the conditions of the definition
except, possibly, the s-morphisms condition. Then it satisfies the
s-morphisms condition and forms a homomorphism of C-systems.

The proof can be found in the paper “A C-system defined by a universe
category”.



Category of C-systems in U 19

Since homomorphisms of C-systems are pairs of functions between sets
satisfying certain conditions and the composition is given by composition
of these functions, the associativity and unitality of this composition fol-
lows from the associativity and unitality of the composition of functions
between sets.

Problem 8 Let U be a universe. To construct a category CS(U)
of C-systems in U .

Construction 9 The construction is similar to the construction of the
category of Lawvere theories in U . We again encounter the same problem
with the sets of morphisms and solve it at the level of notation by using
the obvious bijections as coercions.



The function from Lawvere theory structures to C-system structures 20

We let Lw(T ) denote the set of Lawvere theory structures on a category
T .

We let CsN(CC) denote the set of l-bijective C-system structures on a
category CC.

Problem 10 For a category T to construct a function

LwCs : Lw(T )→ CsN(T op)

from the Lawvere theory structures on T to the l-bijective C-system
structures on T op.



The function from Lawvere theory structures to C-system structures 21

Construction 11 Let CC = T op. We need to construct a l-bijective
C-system structure on CC. We set:

The length function l = L−1.

The map ft : Ob(CC) → Ob(CC) maps L(0) to L(0) and any object
X such that l(X) > 0 to L(l(X)− 1).

The distinguished final object pt is L(0).

For pt the morphism ppt is the identity. For X such that l(X) > 0 the

morphism pX : X → ft(X) is L(ii
l(X)−1,1
0 ).



The function from Lawvere theory structures to C-system structures 22

To define q(f,X) observe first that for any X such that l(X) > 0 we
have a pull-back square in CC of the form

X
L(ii

l(X)−1,1
1 )

−−−−−−→ L(1)

pX↓ ↓
ft(X) −→ L(0)

(2)

Given f : Y → ft(X) we set

f ∗(X) = L(l(Y ) + 1)

Since (2) is a pull-back square and L(0) is a final object there is a unique
morphism q(f,X) : f ∗(X)→ X such that

q(f,X) ◦ pX = pf∗(X) ◦ f q(f,X) ◦ L(ii
l(X)−1,1
1 ) = L(ii

l(Y ),1
1 ) (3)

The verification of the axioms of a C-system can be found in “Lawvere
theories and C-systems”.



The function from Lawvere theory structures to C-system structures and morphisms23

Lemma 12 Let G : (T1, L1) → (T2, L2) be a morphism of Lawvere
theories. Then the functor Gop is a homomorphism of C-systems
(T op1 , LwCs(L1))→ (T op2 , LwCs(L2)).

For the proof see “Lawvere theories and C-systems”.



The functor from Lawvere theories in U to C-systems in U 24

Problem 13 To construct a functor

LC : LW (U)→ CSN(U).

Construction 14 We set LCOb to be the function that takes a Law-
vere theory to the opposite category of its underlying category with the
C-system structure defined by Construction 11. We set LCMor to be the
function that takes a functorG that is a morphism of Lawvere theories to
Gop. It is well defined by Lemma 12. That the functions (LCOb, LCMor)
form a functor, i.e., commute with the identity morphisms and compo-
sitions is straightforward.



The function from C-system structures to Lawvere theory structures 25

Problem 15 For a category CC to construct a function

CsLw : CsN(CC)→ Lw(CCop)

To perform a construction we will need a number of lemmas and in-
termediate constructions. Let us fix a category CC and a l-bijective
C-system structure cs = (l, pt, ft, p, q, s) on CC. We will often write
CC both for the category and for the C-system (CC, cs).



The function from C-system structures to Lawvere theory structures 26

Problem 16 For m ∈ N and i = 0, . . . ,m− 1 to construct a mor-
phism πmi : l−1(m)→ l−1(1) in CC.

Construction 17 By induction on m.

For m = 0 there are no morphisms to construct.

For m = 1 we set π10 = Idl−1(1).



The function from C-system structures to Lawvere theory structures 27

For the successor consider the canonical square:

l−1(m + 1)
q(π,l−1(1))−−−−−→ l−1(1)

pl−1(m+1)↓ ↓ pl−1(1)

l−1(m)
π−→ l−1(0)

(4)

where we use π to denote the unique morphisms from objects of CC
to the final object l−1(0). We set

πm+1
i =

{
pl−1(m+1) ◦ πmi for i < m
q(π, l−1(1)) for i = m



The function from C-system structures to Lawvere theory structures 28

Problem 18 For any m,n ∈ N and a function f : stn(m) →
stn(n) to construct a morphism Lf : l−1(n)→ l−1(m) in CC.

Construction 19 By induction on m.

For m = 0 we set Lf = π.

For m = 1 we set Lf = πnf(0).

For the successor consider f : stn(m+ 1)→ stn(n) and consider again
the following square



The function from C-system structures to Lawvere theory structures 29

l−1(m + 1)
q(π,l−1(1))−−−−−→ l−1(1)

pl−1(m+1)↓ ↓ pl−1(1)

l−1(m)
π−→ l−1(0)

(5)

We define Lf as the unique morphism such that:

Lf ◦ pl−1(m+1) = L
ii
m,1
0 ◦f

Lf ◦ q(π, l−1(1)) = L
ii
m,1
1 ◦f (6)

where, let us recall,

iim,10 : stn(m)→ stn(m + 1)

iim,11 : stn(1)→ stn(m + 1)

are the morphism that define the representation

stn(m + 1) = stn(m)q {m + 1}



The function from C-system structures to Lawvere theory structures 30

We can now complete the construction of the function

CsLw : CsN(CC)→ Lw(CCop)

Construction 20 We need to construct a Lawvere theory structure
on CCop, i.e. a functor L : F → CCop satisfying the conditions of Defi-
nition 2. We define the object part of L as l−1. We define the morphism
part of L as LMor(f ) = Lf . For the proof that these two functions
form a functor and that this functor is a Lawvere theory structure see
“Lawvere theories and C-systems”.



The function from C-system structures to Lawvere theory structures and morphisms31

Lemma 21 Let G : (CC1, cs1)→ (CC2, cs2) be a homomorphism of
C-systems. Then the functor Gop : CCop

1 → CCop
2 is a morphism of

Lawvere theories (CCop
1 , CsLw(cs1))→ (CCop

2 , CsLw(cs2)).

For the proof see “Lawvere theories and C-systems”.



The functor the category of l-bijective C-system in U to the category of Lawvere theories in U 32

Problem 22 To construct a functor CL : CSN(U)→ LW (U).

Construction 23 Let (CC, cs) be a C-system. Then

CLOb(CC, cs) = (CCop, CsLw(cs))

where CsLw(cs) is defined by Construction 20.

The morphism component of CL takes a homomorphism

G : (CC1, cs1)→ (CC2, cs2)

to Gop. It is well defined by Lemma 21.

The identity and composition axioms are straightforward from the cor-
responding properties of functor composition and its compatibility with
the function G 7→ Gop.



The isomorphism theorem 33

Theorem 24 For any universe U , Constructions 14 and 23 define
mutually inverse isomorphisms between the categories of Lawvere
theories in U and l-bijective C-systems in U .

As a part of the proof of this theorem one proofs the following lemma.

Lemma 25 For any category T the functions

LwCs : Lw(T )→ CsN(T op)

CsLw : CsN(T op)→ Lw(T )

are mutually inverse bijections.

For the complete proof see “Lawvere theories and C-systems”.


