The Artin-Hasse isomorphism of perfectoid open unit disks and a Fourier-type theory for continuous functions on \mathbb{Q}_p .

Francesco Baldassarri*

MPIM, March 21, 2018

Let

$$F(T) = \exp\sum_{i=0}^{\infty} T^{p^i} / p^i \in \mathbb{Z}_{(p)}[[T]]$$

be the Artin-Hasse series. In [1] we identified the (p, T)-adic completion \mathscr{D} of the ring $\mathbb{Z}_{(p)}[T^{1/p^{\infty}}]$ with a topological Hopf algebra of \mathbb{Z}_p -valued measures on the uniformly open subsets of \mathbb{Q}_p , equipped with the topology of uniform convergence on the families of balls of equal radius, in such a way that, for any $i \in \mathbb{Z}$,

$$\lim_{n \to +\infty} F(T^{p^{i-n}})^{p^n} = \Delta_{p^i}$$

is the Dirac mass at p^i . So, for the inverse series E of F, let

$$\mu_{\operatorname{can}} := \lim_{n \to +\infty} E(\Delta_{p^{-n}} - \Delta_0)^{p^r}$$

be the \mathbb{Z}_p -valued measure on \mathbb{Q}_p corresponding to T. We let $\mathbb{D} := \text{Spa}(\mathscr{D}, \mathscr{D})$ be the "formal perfectoid" unit open disk over \mathbb{Z}_p [6] and, for any perfectoid extension K/\mathbb{Q}_p , consider the isomorphism

$$\overline{F}: \mathbb{D}_{K^{\flat}}(0) \xrightarrow{\sim} \mathbb{D}_{K^{\flat}}(1)$$

of formal perfectoid unit open disks over K^{\flat} , centered at 0 (resp. at 1), obtained from F. We use Barsotti's algorithms [5] and the magic of the entire function $\Psi_p \in \mathbb{Z}[[x]] \cap \mathbb{Q}_p\{x\}$ defined by the functional equation [2]

$$x = \sum_{j=0}^{\infty} p^{-j} \Psi_p (p^j x)^{p^j}$$

which satisfies $\Psi_p(\mathbb{Q}_p) \subset \mathbb{Z}_p$, to describe the analytic properties of the untilted form

$$(\overline{F})^{\sharp}: \mathbb{D}_K(0) \xrightarrow{\sim} \mathbb{D}_K(1)$$

of \overline{F} .

Our main result is the construction of a topological basis $\{G_q\}_{q\in S}$, where $S = \mathbb{Z}[1/p] \cap \mathbb{R}_{\geq 0} = S' \cup \{0\}$, of the Fréchet space of continuous functions $\mathbb{Q}_p \to \mathbb{Q}_p$, consisting of entire functions $G_q : \mathbb{C}_p \to \mathbb{C}_p$ defined over $\mathbb{Z}_{(p)}$ and taking integral values all over \mathbb{Q}_p . It satisfies $G_0(x) = 1$ and

$$G_q(x+y) = \sum_{q_1+q_2=q} G_{q_1}(x)G_{q_2}(y)$$
 and $G_{pq}(px) = G_q(x)$, $\forall q \in S$.

^{*}Università di Padova, Dipartimento di Matematica, Via Trieste, 63, 35121 Padova, Italy.

Then, for any $a \in \mathbb{Q}_p$, the Dirac mass Δ_a at a we have

$$\Delta_a = \sum_{q \in S} G_q(a) \mu_{\rm can}^q$$

where the sum converges in \mathscr{D} , along the filter $\mathcal{F}(S)$ of cofinite subsets of S. It follows that any continuous function $f : \mathbb{Q}_p \to K$ admits the following generalized Amice-Fourier expansion

$$f(-) = \sum_{q \in S} \left(\int_{\mathbb{Q}_p} f \,\mu_{\operatorname{can}}^q \right) G_q(-) \;,$$

the convergence being uniform on compact subsets of \mathbb{Q}_p along $\mathcal{F}(S)$. We point out that $a \mapsto \Delta_a$ is Colmez' "second" *p*-adic analog [3, V.1] of the complex-analytic function $x \mapsto e^{2i\pi x}$ (it is the one of [4, IV.1]).

As an application we show that, for any K-valued point $\chi : (S', +) \to (K^{\circ \circ}, \cdot)$ of $\mathbb{D}_K(0)$, the series of entire functions

$$1 + \sum_{q \in S'} \chi(q) \, G_q(x)$$

converges along $\mathcal{F}(S)$ uniformly on a neighborhood of 0 in \mathbb{C}_p to the function $\exp \pi(\chi)x$, where

$$\pi(\chi) = \sum_{i \in \mathbb{Z}} \chi(p^i) p^{-i} \in K ,$$

and, moreover, converges uniformly on \mathbb{Q}_p to a continuous character

$$\psi: (\mathbb{Q}_p, +) \to (1 + K^{\circ \circ}, \cdot) ,$$

which induces a K-rational point ψ of $\mathbb{D}_K(1)$. Then

$$(\overline{F})^{\sharp}(\chi) = \psi$$

References

- tesi [1] Francesco Baldassarri. Interpretazione funzionale di certe iperalgebre e dei loro anelli di bivettori di Witt. Tesi di laurea, Padova, 1974.
- [2] Francesco Baldassarri. Una funzione intera p-adica a valori interi. Ann. Scuola Norm. Sup. Pisa, Ser. IV Vol. II (2):321–331, 1975.
- colmez [3] Pierre Colmez Théorie d'Iwasawa des représentations de de Rham d'un corps local Ann. of Math. (2) Vol. 148 (2):485–571, 1998.
- colmez3 [4] Pierre Colmez (φ , Γ)-modules et représentations du mirabolique de $GL_2(\mathbb{Q}_p)$ Astérisque **330**, 61–153, 2010.
 - MA [5] Iacopo Barsotti. Metodi analitici per varietà abeliane in caratteristica positiva. Capitoli 1,2. Ann. Scuola Norm. Sup. Pisa, Ser. III Vol. XVIII (1):1–25, 1964.
 - **sw** [6] Peter Scholze and Jared Weinstein. Moduli of *p*-divisible groups Cambridge Journal of Mathematics 1 (2): 145–237, 2013.