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Recall the definition of a complex supermanifold N = (N,,q4,On). Let T = Ty & T be
finite-dimensional Z,-graded complex vector space

d =dyldy, do <dimTy, d; < dimTj.

Gr(d,T): N-points of Gr(d, T) = locally free subsheaves of rank d in T ® O 1), where N 1is
an arbitrary complex supermanifold. Yu. I. showed

Gr(d, T)rea = Gr(dy, To) X Gr(d1,T1), g OGra,1) = /\.(S+z RS_, &S ®S84,),

where
St =84, S- = (X ®O0Grax)/Sa)

are the two non-ample tautological bundles on a usual grassmannian Gr(a, X).



Already in 1981(?) the question arose:

1S OGr(q.1) 1somorphic to /\'(SH RS, DS ®S8,4,), 1., does Gr(d, T) split?

The answer was given by Igor Skornyakov who showed that Gr(1|1, C*?) does not split. This
implies then that Gr(dy|d;, T) splits if and only if dod;(dimTy — dy)(dimT; — d;) = O.

Moreover, Gr(d, T) is projective (embeds in G(1|0, 7") for some 7”) if and only if Gr(d, T)
splits. Igor and I characterized all projective flag supermanifolds: for instance all flag
supermanifolds of maximal length are projective but do not neccessarily split.

Without details, I will mention that a Bott-Borel-Weil theory for flag supermanifolds started
being developed already in the 1980’s: see the recent book I.P., C. Hoyt, Classical Lie algebras
at infinity, Springer Monographs in Mathematics, 2022.

However, this theory is incomplete: it concerns only ”generic” line bundles of flag
supermanifolds. For instance, the cohomology of all line bundles on all supergrassmannians
seems not to have been systematically computed.

Recently, the cohomology of the sheaf Og, ) was computed in S. Sam, A. Snowden,
Cohomology of flag supermanifolds and resolution of determinantal 1deals, arXiv 2108.00504



3. A theorem and a conjecture

The following 1s proved in I. P., A. Tikhomirov, Linear Ind-Grassmannians, Pure and Appl.
Math Quarterly 10 (2014), 289-323.

Theorem: Let ¢: Gr(a,X) — Gr(b, Y) be an embedding satisfying ¢*Og,».v)(1) = Ograx)(1).

Then ¢ factors through a projective subspace of Gr(b, Y) or is a standard extension as defined
below.
An embedding ¢: Gr(a,X) — Gr(b,Y) is a strict standard extension if it has the form

X4 = X; ® Yfixeq fOor some isomorphism ¥ = X @ X and some subspace Yfixeq C X.

A standard extension is the composition of a standard extension with a duality map

Gr(b,Y) = Gr(dimY — b, Y") or Gr(a,X) = Gr(dimX — a, X").

In view of the non-projectivity of a generic supergrassmannian, embeddings of
supergrassmannians into other supergrassmannians should play a more interesting role than in
commutative geometry. Note that the notion of standard extension generalizes to the super case.

Conjecture: Let ¢: Gr(d, T) — Gr(f, Q) be an embedding of supergrassmannians inducing an
isomorphism on Picard groups. Assume that Gr(d, T) is not projective. Then ¢ is a standard
extension.

Note: see also the recent paper by E. Shemyakova and T. Voronov, arXiv 1906.12011, in which
a “super Pliicker” embedding 1s defined.



4. Flag ind-varieties

Let G = GL(o0) = GL(E, V), where V 1s a countable-dimensional complex vector space and E 1s
a fixed basis of V. By definition, GL(E, V) 1s the group of automorphisms of V, each of which
leaves all but finitely many elements of £ fixed.

GL(E,V) = 1i_n>1GL(n, Vi), Vi, = span(eq, ..., e,).

Flag ind-varieties are ind-varieties G/P where P are parabolic subgroups of G such that
PnNGL(#n,V,) =P,. Then
G/P =~ li_I)n(GL(n, V)l Pr) .

Ivan Dimitrov and I gave a flag realization of flag ind-varieties: 1. Dimitrov, I.P. Ind-varieties of
generalized flags as homogeneous spaces for classical ind-groups, IMRN 2004.

The key notion is that of a generalized flag in V: this is a chain ¥ of subspaces of V satisfying

the following two conditions

— each element of F has an immediate successor or an immediate predecessor

— VYveV,v#0, wehave v € F/\F’ for some F’ € ¥ and its immediate successor F”’



A generalized flag ¥ is E-compatible if each subspace in ¥ is spanned by vectors of E.

The basis E determines an ind-torus H C G (Cartan subgroup). Parabolic subgroups P C G
containing A are in 1 — 1 correspondence with E-compatible generalized flags in V:

F < StabgF = Py

Moreover, G/P# = FI(F,E,V), where FI(F,E,V) =
{all generalized flags ¥ isomorphic to ¥ as ordered sets, such that # and ¥ are commensurable and
¥ is E’-compatible for a basis E’(depending on ) differing from E in finitely many vectors}

Analogies with the finite-dimensional super case:

— not all Borel subgroups of G are conjugate

— existence of non-ind-projective manifolds of generalized flags

In fact, FI(f, E, V) is ind-projective & ¥ 1is ordered by Z>¢, Z<g, Z, or a finite set.



Differences with the super case:

— if ¥ ={0c W c V}then Gr(W,E,V) := FI(F, E, V) is ind-projective.

— 1if ¥ is maximal, then FI(F, E, V) is almost never ind-projective, while flag supermanifolds
of maximal length are always projective.



7. Automorphism groups

1. Finite-dimensional flag varieties:

PGL(X)

AutFlky, ..., k-, X) =~
PGL(X) <2y if k; = dimX — k,,;_; foralli

Very little dependence on k1, ..., k!

Should be worked out also in the super case!



2. Ind-varieties of generalized flags:

Two easy cases. Consider P(V) := FI(F,E,V)forF = 0Oc W CV),dmW =1,
and FI(F',E,V) for ' = (0 c W c V), codimyW’ = 1. Then

AutP(V) = PGL(V), AutFI(¥',E,V) = PGL(V,),

where V., = span {E*} and E* is the system dual to E.
Observation: the connected component of unity in Aut FI(¥, E, V) is not a subgroup of PGL(V).
Next case: Aut FI(F,E,V)for¥ = (0 c W c V), codimyW = dimW = oo.

Gr(W,E,V) .= FI(f,E,V) is the Sato grassmannian. To describe Aut Gr(W, E, V) we need a
definition.

Let X ® Y — C be a non-degenerate form. Then Y C X*.

M(X,Y) = {invertible ¢: X — X | ¢*(Y) = Y} is the Mackey group of the form X ® ¥ — C.

AutGr(W,E, V)~ P (M U U, U ® U)O) > Z» where U 1s a countable-dimensional vector
space.



The elements of M(U* @ U, U* ® U)" have the following matrix form

( ) ( \
finite no finite no
rOWS restriction FOWS restriction

A= Al =
S finite S’ finite

finitary columns finitary columns

\ ) \ )

rkS = rkS’

Another example: ¥ ={0Cc ¥ CFr C--- C F_» C F_1 C V}, maximal generalized flag

finite rows
and columns

AutFI(F,E,V)=1A = and A~! has the same form }




JF as an ordered set

In general:
finite finite | no
rOwSs roOws restriction
J as restrictions ﬁ .
nite
an ordered on rows and
set columns columns
: finite
finitary
columns

The details see in M. Ignatyeyv, 1. P., Automorphism groups of ind-varieties of generalized flags,
arXiv 2106.00989.

Conjecture. Aut FI(7,E,V)©°" ~ Aut FI(¥',E’, V)*°" if one of the following holds:

— for some ¢: V — V with ¢(E) = E’, ¥’ and ¢(F) differ by adding or deleting finitely
many spaces each of which yields a new finite-dimensional quotient.

— for some y: V — V, with y(E) = E”*, F'+ and y/(F) differ by adding or deleting finitely
many spaces each of which yields a new finite-dimensional quotient.
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