
THREE LECTURES ON MOTIVIC COHOMOLOGY

This is a short course giving an introduction to the parallel theories of motivic
cohomology furnished by Bloch’s higher Chow groups and Voevodsky’s motivic co-
homology. We will introduce a number of motivic categories and describe how they
give a framework for motivic cohomology. We will say a bit about two applications
of the theory: constructions of the “motivic” spectral sequence from motivic coho-
mology to algebraic K-theory, and the proof of the Bloch-Kato conjectures relating
mod n-motivic cohomology with mod n étale cohomology. Finally, we will describe
theories of motivic cohomology over a general base-scheme.

Lecture 1: An introduction to higher Chow groups and triangulated
categories of motives

In the first lecture, we will introduce Bloch’s cycle complex, and Bloch’s higher
Chow groups. After detailing the construction, we will briefly describe the basic
properties of the higher Chow groups as a Bloch-Ogus twisted duality theory: func-
toriality, homotopy invariance, projective bundle formula, and the crucial localiza-
tion sequence. We conclude with an introduction to the relation of the higher Chow
group with algebraic K-theory via the Chern character and the Bloch-Lichtenbaum
spectral sequence.

In the second part of this lecture, we will introduces some categories of motives.
We start with Grothendieck’s category of Chow motives for smooth projective va-
rieties. Next, we discuss Voevodsky’s triangulated category of geometric motives
and the resulting theory of motivic cohomology.

Lecture 2: Motivic cohomology and triangulated categories of mo-
tives

We discuss Voevodsky’s sheaf-theoretic version of motives, the triangulated cate-
gory of effective motives. We describe Voevodsky’s embedding theorem and the
categorical description of Suslin homology. We discuss the comparison theorem
identifying motivic cohomology with Bloch’s higher Chow groups, and the relation
of mod n-motivic cohomology with étale cohomology.

We use the comparison theorem to embed the category of Chow motives in the
category of geometric motives, and briefly describe realization functors associated
to de Rham cohomology and Betti (co)homology.

Lecture 3: Applications and perspectives

We introduce the construction by Morel and Voevodsky of A1-homotopy theory
and briefly describe how Voevodsky’s triangulated category of motives fits into this
picture via the motivic Eilenberg-MacLane spectrum. We discuss two applications
of A1-homotopy theory to motivic cohomology: the slice spectral sequence and the
solution of the Bloch-Kato conjectures.

The second part of this lecture is devoted to extensions of the theory to more
general base-schemes. This includes the Déglise-Cisinski category of Beilinson mo-
tives, and it’s use by Spitzweck in constructing a motivic cohomology spectrum
over an arbitrary base. We conclude with a description of Hoyois’ construction of
this motivic cohomology spectrum, which relies on the theory of framed correspon-
dences.
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0. An overview of these lectures

We can start the story with Grothendieck’s idea of motives of smooth projective
varieties as giving a framework for the “universal Weil cohomology for smooth pro-
jective varieties over an algebraically closed field”. This has never been carried out
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fully successfully, although the construction of motives for an adequate equivalence
relation makes perfectly good sense and is very much in use today.

The next step was the introduction of what would now be known as “oriented
cohomology with additive formal group law” but really goes under the name of
Bloch-Ogus twisted duality theory. This consists of assigning a bi-graded ring
X 7→ ⊕Ha(X,Λ(b)) for X smooth over k, together with Gysin isomorphisms
Ha
Z(X,Λ(b)) ∼= Ha−2c(Z,Λ(b − c)) for smooth closed codimension Z ⊂ X (plus

other stuff, like 1st Chern lf line bundles ...). The need for the second grading (twist)
arose from concrete examples, like `-adic étale cohomology over a non-algebraically
closed field. Beilinson pointed out that Gillet’s theory of Chern classes made Adams
graded algebraic K-theory the universal theory with Q-coefficients, and the search
was soon on for the universal integral theory.

Beilinson and Lichtenbaum produced axioms for sheaves of complexes Γ(q) (Beilin-
son used Zariski sheaves, Lichtenbaum used étale sheaves) that would produce the
universal theory by taking hypercohomology. The axioms included the known re-
lation with algebraic K-theory (enchanced to an Atiyah-Hirzebruch type spectral
sequence giving an integral relation), a connection with the classical Chow ring and
with Milnor K-theory of fields, as well as the identification of the mod n theory
with a truncated version of étale cohomology.

Another axiom, the so-called Beilinson-Soul’e vanishing conjectures, may have
inspired Beilinson to reframe this conjectural universal theory as arising as Ext-
groups in an abelian category of “motivic sheaves” over each scheme X, with a six
functor formalism on the derived category. In doing so, the universal Bloch-Ogus
cohomology theory became rechristened as “motivic cohomology”.

This vision has not been completely realized, but nearly so. The first construc-
tion of complexes that (partly) satisfied the Beilinson-Lichtenbaum axioms was
constructed by Bloch, with his cycle complex and higher Chow groups. The cate-
gorical framework was attacked by many, but Voevodsky came up with the most
successful version, at least of a triangulated category that has the “feel” of the
derived category of the conjectural category of motivic sheaves over a field. Re-
markably, the motivic cohomology that arises out the this categorical construction
agrees with Bloch’s higher Chow groups. Work of others (Cisinski-Déglise, Ayoub,
Röndigs-Østvær, Spitzweck, Hoyois,...) has extended Voevodsky’s triangulated cat-
egory to a very satisfying theory (actually several different constructions that yield
more or less the same theory) over arbitrary base-schemes.

In these three lectures, I will begin in the first lecture with a description of Bloch’s
cycle complex and the first of Voevodsky’s categorical construction. This is a very
straightforward matter, but has the disadvantage that the motivic cohomology
resulting from it is nearly impossible to compute or even relate to other theories,
such as the classical Chow groups.

In the second lecture, I will discuss Voevodsky’s great innovation, which was to
put this rather naive theory into a sheaf-theoretic context, and using a mixture
of fairly classical construction with the cohomological methods made available by
the use of sheaves, was able to realize the abstract motivic cohomology as arising
as the hypercohomolgy of a sheaf of complexes, just as envisaged by Beilinson
and Lichtenbaum. Moreover, a similar combination of geometry and sheaf theory
allowed him (with Friedlander and Suslin) to connect the motivic cohomology with
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Bloch’s higher Chow groups, and his category with Grothendieck’s category of Chow
motives.

In the third lecture, I will look at the interplay of the categories of motives
with a finer theory: motivic homotopy theory. This will clarify the relation of
motivic cohomology with algebraic K-theory, as well as providing many of the
tools used by Voevodsky and others to verify the Beilinson-Lichtenbaum conjectures
describing the relation of mod n motivic cohomology with mod n étale cohomology.
In addition, this gives a framework for expanding the theory over a field to one over
an arbitrary base-scheme, using methods that are interesting in their own right.

A partial table of the historical development of motivic cohomology and its cat-
egorical framework:

Contributor Cohomology Category
Weil Weil cohomology
Grothendieck Universal Weil cohomology Motives for smooth projective varieties
Bloch, Ogus Twisted duality theories
Beilinson, Lichtenbaum Universal cohomology, motivic complexes
Beilinson Motivic cohomology Abelian categories of motivic sheaves
Bloch Cycle complexes, higher Chow groups
Suslin algebraic singular complex, algebraic homology
Voevodsky motivic cohomology on Smk triangulated categories of motives over a field
Morel-Voevodsky generalized motivic cohomology motivic homotopy categories
Röndigs-Østvær motivic cohomology on Smk modules over HZ
Cisinski-Déglise rational motivic cohomology over a base Beilinson motives
Spitzweck motivic cohomology spectrum in SH(B) modules over HZ
Hoyois motivic cohomology spectrum in SHframe(B) modules over HZ

1. Lecture 1: An introduction to higher Chow groups, motivic
cohomology and the triangulated category of motives

1.1. Higher Chow groups.

1.1.1. Motivation. The idea behind Bloch’s construction of his higher Chow groups
is to give a “resolution” of the classical Chow group of dimension q cycles on a
variety (reduced finite-type k-scheme) X modulo rational equivalence CHq(X) :=
Zq(X)/Rq(X), with Zq(X) the group of dimension q algebraic cycles

Zq(X) := ⊕W⊂X,integral, closed, dimension qZ ·W

and Rq(X) ⊂ Zq(X) the subgroup of cycles rationally equivalent to zero. This
latter group has many equivalent definitions, but for us, let’s use

Rq(X) := {i∗0(W )− i∗1(W ) |W ∈ Zq+1(A1 ×X)0,1}

Here Zq+1(A1×X)0,1 is the subgroup of Zq + 1(A1×X) freely generated by integral
W ⊂ A1×X not contained in {0, 1}×X and i0, i1 : X → A1×X are the 0- and 1-
sections. For suchW , the pullback cycles i∗t (W ), t = 0, 1 are well defined dimension
q cycles on X.
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In other words, we have the coequalizer sequence

Zq+1(A1 ×X)0,1

i∗1 //

i∗0

// Zq(X)→ CHq(X)

1.1.2. Bloch’s cycle complex and higher Chow groups. Bloch’s idea is to extend this
sequence to the left, using cycles on algebraic versions of the topological n-simplices.

Definition 1.1. 1. For n ≥ 0 an integer let

∆n
k ⊂ An+1

k := Spec k[t0, . . . , tn]

be the affine hyperplane defined by
∑
i ti = 1. A codimension c face of ∆n

k is a
subscheme F ⊂ ∆n

k defined by equations of the form ti1 = . . . = tic = 0, with
0 ≤ i1 < . . . < ic ≤ n, c ≤ n.
2. Let X be a k-variety. For n, q ≥ 0, let zq(X,n) ⊂ Zq+n(∆n

k×X) be the subgroup
freely generated by integral closed subschemes W such that, for each codimension
c face F of ∆n

k , each irreducible coomponent of W ∩X×F has dimension q+n− c.

The collection of varieties {∆n
k}n≥0 forms a smooth, cosimplicial scheme over k.

Letting Ord be the category with objects the finite ordered sets [n] := {0, . . . , n}
(with the standard order) and maps the order-preserving maps of sets, we have

∆k : Ord→ Smk

by ∆k([n]) = ∆n
k and for g : [n]→ [m] an order-preserving map, the map

∆k(g) : ∆n
k → ∆m

k

is the affine-linear map

∆k(g)(t0, . . . , tn) = (∆k(g)0, . . . ,∆k(g)m); ∆k(g)j =
∑

i∈g−1(j)

ti

Note that ∆k(g) factors as a smooth map p(g) : ∆n
k → F followed by the inclusion

iF : F ↪→ ∆m
k for some face F , so we have a well-defined pullback

g∗ := (IdX ×∆k(g))∗ : zq(X,m)→ zq(X,n)

This gives us the simplicial abelian group [n] 7→ zq(X,n), with corresponding ho-
mological complex (zq(X, ∗), d); as usual, dn : zq(X,n) → zq(X,n − 1) is the map∑n
i=0(−1)iδni , with δni : [n − 1] → [n] the unique injective order-preserving map

with i not in the image.

Definition 1.2. Let X be a k-variety. The complex (zq(X, ∗), d) is Bloch’s dimen-
sion q cycle complex and the homology is Bloch’s higher Chow group

CHq(X,n) := Hn((zq(X, ∗), d))

If X is equi-dimensional over k of dimension d, we may index by codimension,
defining (zq(X, ∗), d) := (zd−q(X, ∗), d), CHq(X,n) = CHd−q(X,n); we extend the
notation to X locally equi-dimensional over k (e.g., X smooth over k) by taking
the direct sum over the connected components of X.
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1.1.3. Basic properties. Here is a list of the fundamental properties of the cycle
complexes and higher Chow groups.

Theorem 1.3. 1. Let zq(X, 0) → CHq(X, 0), Zq(X) → CHq(X) be the canonical
surjections. There is a unique isomorphism CHq(X, 0) ∼= CHq(X) making

zq(X, 0)

��

Zq(X)

��

CHq(X, 0)
∼ // CHq(X)

commute.
2. Let f : Y → X be a proper map of k-varieties. The push-forward maps (Id×f)∗ :
Zn+q(∆

n
k × Y )→ Zn+q(∆

n
k ×X) define a functorial pushfoward map of complexes

f∗ : (zq(Y, ∗), d)→ (zq(X, ∗), d)

and on homology, f∗ : CHq(Y, n)→ CHq(X,n).
3. Let f : Y → X be a flat map of k-varieties, of relative dimension d. The flat
pullback maps

(Id× f)∗ : Zq+n(∆n
k ×X)→ Zq+n+d(∆

n
k × Y )

give rise to well-defined functorial maps

f∗ : zq(X, ∗)→ zq+d(Y, ∗)

and on homology f∗ : CHq(X,n)→ CHq+d(Y, n).
3’. Let f : Y → X be a morphism with X smooth and Y locally equi-dimensional
over k. The “partially defined” pullback maps

(Id× f)∗ : Zq(∆n
k ×X)Id×f → Zq(∆n

k × Y )

give rise to well-defined functorial maps

f∗ : zq(X, ∗)→ zq(Y, ∗)

in the derived category D−(Ab) and on the homology f∗ : CHq(X,n)→ CHq(Y, n).
4. Let p : E → X be an affine-space bundle (torsor for a vector bundle over X) of
relative dimension d. Then p∗ : CHq(X,n)→ CHq+d(E,n) is an isomorphism.
5. For X,X ′ k-varieties, we have well-defined external products

�X,X′ : zq(X, ∗)⊗Z zq′(X
′, ∗)→ zq+q′(X × Y, ∗)

in D−(Ab), inducing external products on homology �X,X′ : CHq(X,n)⊗CHq′(X
′, n′)→

CHq+q′(X ×X ′, n+ n′).
For f : Y → X, f ′ : Y ′ → X ′ we have

(f × f ′)∗ ◦�Y,Y ′ = �X,X′ ◦ (f∗ ⊗ f ′∗)

if f, f ′ are proper.

(f × f ′)∗ ◦�X,X′ = �Y,Y ′ ◦ (f∗ ⊗ f ′∗)

if f and f ′ are flat or if X, X ′ are smooth and Y, Y ′ are locally equi-dimensional.
5’. If X is smooth over k, let δX : X → X ×X be the diagonal. Then ∪X := δ∗ ◦
�X,X makes CH∗(X, ∗) := ⊕q,n≥0CHq(X,n) a bi-graded Z-algebra, commutative
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in q and graded-commutative in n. Moreover, if f : Y → X is a morphism with Y
smooth, then we have the projection formula

f∗ ◦ (f∗ ∪ IdY ) = IdX ∪ f∗.

6. (Projective bundle formula). Let V → X be a rank n+1 vector bundle over some
smooth X, with associated projective space bundle P(V ) := Proj(Sym∗V )

q−→ X. We
have ξ : c1(O(1)) ∈ CH1(P(V )), and via q∗, CH∗(P(V ), ∗) is a bi-graded CH∗(X, ∗)-
module. Then CH∗(P(V ), ∗) is a free CH∗(X, ∗)-module with basis 1, ξ, . . . , ξn.

Finally, all these structures restrict to the classical classical ones for CH∗(−) and
CH∗(−) via the isomorphism (1).

A crucial property of the higher Chow groups is the long exact localization se-
quence. Let X be a k-variety, i : W → X a closed subvariety with open complement
j : U → X. We have the classical right-exact localization sequence

CHq(W )
i∗−→ CHq(X)

j∗−→ CHq(U)→ 0

Theorem 1.4 (Bloch, 1992). With i : W → X, j : U → X as above, the sequence

zq(W, ∗)
i∗−→ zq(X, ∗)

j∗−→ zq(U, ∗)

extends canonically to a distinguished triangle

zq(W, ∗)
i∗−→ zq(X, ∗)

j∗−→ zq(U, ∗)→ zq(W, ∗)[1]

in D−(Ab), giving rise to the long exact localization sequence

. . .→ CHq(W,n)
i∗−→ CHq(X,n)

j∗−→ CHq(U, n)
∂n−→ CHq(W,n− 1)→ . . .

→ CHq(W, 0)
i∗−→ CHq(X, 0)

j∗−→ CHq(U, 0)→ 0

extending the classical sequence via the isomorphism CHq(−, 0) ∼= CHq(−).

Some remarks:

1. Proper pushforward and flat pullback are straightforward. The homotopy prop-
erty for the projection A1 × X → X is proven by identifying (A1, i0, i1) with
(∆1, δ1

1 , δ
0
1) and using an algebraic version of the standard subdivision of ∆n ×∆1.

One needs to be careful here as the “new” faces introduced in ∆n×∆1 to make the
subdivision need to be taken into account when defining the suitable cycle groups
on ∆n ×∆1 ×X, and one needs an elementary moving lemma to make the proof
of homotopy invariance of homology from topology work in this setting.

The contraviant functoriality for morphisms to a smooth variety relies on a
version of the classical Chow moving lemma, in case X is affine or projective. To
get this to work in the general smooth case, one needs to use the localization
property to prove a Mayer-Vietoris sequence, which reduces to the affine case.
2. By a standard argument, the localization theorem gives a long exact Mayer-
Vietoris sequence: For X = U ∪ V , U, V open, we have W := X \U = V \ (U ∩ V )
and one pieces the two resulting localization triangles together to give a Mayer-
Vietoris distinguished triangle

zq(X, ∗)
(j∗U ,j

∗
V )−−−−−→ zq(U, ∗)⊕ zq(V, ∗)

jV ∗U∩V −j
U∗
U∩V−−−−−−−−→ zq(U ∩ V, ∗)

∂−→ zq(X, ∗)[1]
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The Mayer-Vietoris sequence is then used to extend the basic homotopy invariance,
for X × A1 → X, to the general version, and is similarly used to prove the pro-
jective bundle theorem, starting from the case of a product (which is proven using
localization for the standard cell decomposition of Pn, plus homotopy invariance).
3. The localization theorem uses essentially new ideas introduced by Bloch. The
basic problem is as follows. Let i : W → X, j : U → X be as in the statement
and let zq(U, ∗)j ⊂ zq(U, ∗) be the image j∗(zq(X, ∗)). This gives us the degreewise
exact sequence of complexes

0→ zq(W, ∗)
i∗−→ zq(X, ∗)

j∗−→ zq(U, ∗)j → 0

so it suffices to show that the inclusion zq(U, ∗)j → zq(U, ∗) is a quasi-isomorphism
(it is easy to construct examples for which this is a proper inclusion). The problem is
that a subvarietyW ∈ zq(U, n) may have closure W̄ in Zq+n(∆n×X) that no longer
intersects all faces properly. To deal with this, Bloch shows that after a sequence of
blow-ups of faces U×F in ∆n×U (which creates a new “polyhedral” version U×∆̃n

of ∆n×U , the inverse image of W has closure in ∆̃n×X that intersects all “faces”
properly. Then by a clever subdivision argument, Bloch puts this blow-up of W
back in zq(U, n) and shows that it actually lands in zq(U, n)j . Finally, Bloch shows
that this transformation defines a retraction zq(U, ∗) → zq(U, ∗)j in the derived
category, giving an inverse to the inclusion zq(U, ∗)j → zq(U, ∗).

1.1.4. Relations with algebraic K-theory. For a variety X, the Grothendieck group
G0(X) of coherent sheaves on X is closely related to the Chow groups by taking the
topological filtration: Let Cohq(X) ⊂ Coh(X) be the full subcategory consisting of
coherent sheaves with support in dimension ≤ q and let F top

q G0(X) ⊂ G0(X) be
the image of K0(Cohq(X)). It is well-known that sending a dimension q subvariety
W to [OW ] ∈ F top

q G0(X) descends to a well-defined homomorphism

clq : CHq(X)→ grtop
q G0(X)

and this map is in fact an isomorphism modulo torsion.
Bloch and Lichtenbaum extended this construction to the higher algebraic G-

theory, G∗(X) = G∗(Coh(X)) on the one side, and the higher Chow group on the
other, by considering a “topological filtration” of thge cosimplicial scheme [n] 7→
∆n
k ×X. One lets Fq Coh(X,n) ⊂ Coh(∆n

k ×X) be the full subcategory of coherent
sheaves F with support satisfying

dimsupp (F) ∩X × F ≤ n+ q − c

for each fact F ⊂ ∆n of codimension c. Applying Quillen K-theory gives a tower
of simplicial spectra

[n] 7→ (. . .→ K(Fp Coh(X,n))→ K(Fp+1 Coh(X,n))→
. . .→ K(FdimX(Coh(X,n))) = K(Coh(∆n

k ×X)))

and associated tower of total spectra

. . .→ Fp Coh(X, ∗)→ Fp+1 Coh(X, ∗)→ . . .→ FdimX(Coh(X, ∗)) = Coh(∆∗k ×X)

Moreover, the natural map Coh(X)→ Coh(∆∗k ×X) induces a weak equivalence

G(X) := K(Coh(X))
∼−→ GCoh(∆∗ ×X)
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The tricky part is to show that

πn(K(Fp Coh(X, ∗))/K(Fp−1 Coh(X, ∗))) ∼= CHp(X,n)

but having done this (Bloch-Lichtenbaum for X = SpecF , Friedlander-Suslin in
general with a somewhat different construction, Levine in general with this con-
struction), one has the Atiyah-Hirzebruch spectral sequence

E1
p,q = CHp(X, p+ q)⇒ Gp+q(X)

For X smooth, we have G∗(X) = K∗(X), and one usually reindexes to an E2

spectral sequence looking like

Ep,q2 = CH−q(X,−p− q)⇒ K−p−q(X)

Gillet’s theorem of Chern classes for higher K-theory works to give Chern class
maps (for X smooth)

cq,n : Kn(X)→ CHq(X,n)

extending the classical Chern classes cq : K0(X)→ CHq(X). Using these, one can
show that the AH spectral sequence degenerates rationally.

1.1.5. Milnor K-theory. For a field F , the Milnor K-theory of F is the N-graded
commutative ring

KM
∗ (F ) = (F×)⊗∗/({a⊗ (1− a) | a ∈ F \ {0, 1})

For x = (x1, . . . , xn) ∈ (F×)n, let Σ(x) =
∑
i xi. Nestorenko-Suslin showed that

the map sending (F×)n \ {Σ(x) | x ∈ (F×)n} to zn(F, n) by

x = (x1, . . . , xn) 7→ (
−1

1− Σ(x)
, (

x1

1− Σ(x)
, . . . , (

xn
1− Σ(x)

)

descends to give an isomorphism KM
n (F )→ CHn(F, n). This fact was also proven

by Totaro, using a “cubical” construction of the higher Chow groups. These maps
for varying n yield an isomorphism of graded rings KM

∗ (F ) ∼= ⊕nCHn(F, n).

1.2. Triangulated categories of motives.

1.2.1. Grothendieck-Chow motives. Grothendieck constructed a series of categories
of motives for smooth projective varieties, depending on a choice of a so-called ad-
equate equivalence relation for algebraic cycles. His ultimate goal was to construct
the universal Weil cohomology theory using purely geometric means. This is still an
open question. However, using the finest adequate relation, namely, rational equiv-
alence, one arrives at the category of Chow motives, which was later expanded by
Voevodsky to form the basis for a truly successful theory of motivic cohomology.

To fit better with Voevodsky’s construction, we define a homological version of
Chow motives.

Definition 1.5. The category of Chow correspondences over a field k, CorCH(k),
has objects [X] for each smooth projective variety [X] over k and morphism groups
(for irreducible X)

HomCorCH(k)([X], [Y ]) := CHdimX(X × Y );

in general, write X = qiXi as a disjoint union of its irreducible components and
define HomCorCH(k)([X], [Y ]) =

∏
i HomCorCH(k)([Xi], [Y ]).
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The composition law is that of correspondences: For W1 ∈ CHdimX(X × Y ) and
W2 ∈ CHdimY (Y × Z) define

W2 ◦W1 := pX×Z∗(p
∗
X×Y (W1) · p∗Y×Z(W2))

The identity on [X] is given by the diagonal cycle ∆X ∈ CHdimX(X ×X).

Note that we need Y to be projective for pX×Z∗ to be defined, and we need
X,Y and Z to be smooth, and we need to pass from cycles to cycles mod rational
equivalence, for the intersection product to be defined.

We have the functor SmProjk → CorCH(k) sending X to [X] and f : X → Y
to the graph Γf ∈ CHdimX(X × Y ).

CorCH(k) is an additive category with ⊕ induced by disjoint union in SmProjk.
Similarly, product over k makes CorCH(k) a tensor category. The next step is to
adjoin formal summands; this is a formal process where one has objects ([X], α)
with α : [X]→ [X] in CorCH(k)([X], [X]) an idempotent endomorphism. This gives
the category of effective Chow motives MotCH(k)eff , with

HomMotCH(k)eff ((X,α), (Y, β)) := β ·HomCorCH(k)(X,Y ) · α

with composition induced from CorCH(k); this is embedded in MotCH(k)eff by send-
ing X to (X, Id). In MotCH(k)eff , we have the Lefschetz motive L, this being the
summand of [P1] given by 0× P1 ∈ CH1(P1 × P1).

Definition 1.6. The category MotCH(k) of Chow motives is defined by inverting
the endofunctor −⊗ L on MotCH(k)eff :

MotCH(k) := MotCH(k)eff [(−⊗ L)−1]

Write M〈n〉 for M ⊗ L⊗n. Note that we have the cancellation property: For
M,N ∈ MotCH(k)eff , the canonical map

HomMotCH(k)eff (M,N)→ HomMotCH(k)eff (M〈1〉N〈1〉)

is an isomorphism. Since the objects of MotCH(k) are all of the form M〈n〉 for
M ∈ Moteff

CH(k) and n ∈ Z, and

HomMotCH(k)(M1〈n1〉,M2〈n2〉) = colimmHomMotCH(k)eff (M1〈n1 +m〉,M2〈n2 +m〉)

the canonical functor MotCH(k)eff → MotCH(k) is a fully faithful embedding.

Remark 1.7. The Chow groups CHn(X) are represented in MotCH(k) by

CHn(X) = HomMotCH(k)(L⊗n, [X])

and CHn(X) is similarly represented by

CHn(X) = HomMotCH(k)([X],L⊗n)

MotCH(k) into a tensor category in which each non-zero object has a dual. For in-
stance the dual of [X] is [X]〈−dimX〉 and the dual of ([X], α) is ([X]〈−dimX〉, αt⊗
Id), where αt = τ∗(α), with τ : X ×X → X ×X the symmetry.
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1.2.2. Voevodsky’s geometric motives. Somewhat in line with Bloch’s idea of re-
solving the Chow groups, Voevodsky defines his triangulated category of geometric
motives by replacing cycles modulo rational equivalence with cycles; he also expands
the basic objects to all smooth k-varieties, not just the smooth projective ones. To
do this, and still have a well-defined composition law using correspondences, he
needed the following lemma

Lemma 1.8. Let X, Y and Z be smooth irreducible k-varieties, and take W1 ∈
ZdimX(X×Y ) andW2 ∈ ZdimY (Y×Z). Suppose that for each irreducible component
C1 of the support of W1, and for each each irreducible component C2 of the support
of W2 the projections C1 → X and C2 → Y are finite and surjective. Then

• The intersection product W := p∗XY (W1) · p∗Y Z(W2) on X × Y × Z is a
well-defined cycle of dimension dimX.

• The support of W is finite over X × Z, so we have a well-defined cycle
pXZ∗(W ) ∈ ZdimX(X × Z)

• For each irreducible component C3 of pXZ∗(W ), the projection C3 → X is
finite and surjective

With this lemma, we can follow Voevodsky in defining the category Cor(k) of
finite correspondences on Smk

Definition 1.9. Let k be a field. The category Cor(k) has objects [X] forX ∈ Smk

and morphism group HomCor(k)([X], [Y ]) the subgroup of ZdimX(X × Y ) freely
generated by subvarieties W ⊂ X × Y such that the projection W → X is finite,
and is surjective onto an irreducible component of X. The composition law is
given by composition of correspondences: For W1 ∈ HomCor(k)([X], [Y ]) and W2 ∈
HomCor(k)([Y ], [Z]) we set

W2 ◦W1 := pXZ∗(p
∗
XY (W1) · p∗Y Z(W2))

The identity Id[X] is given by the diagonal on X ×X.

Sending X ∈ Smk to [X] and a morphism f : X → Y to its graph gives a faithful
embedding [−] : Smk → Cor(k), by which we consider Smk as a subcategory of
Cor(k).

We now use methods from triangulated categories to promote Cor(k) to a “mo-
tivic” category. Cor(k) is an additive, tensor category, with ⊕ given by disjoint
union and ⊗ given by product over k.We consider the bounded homotopy category
Kb(Cor(k)) (i.e. bounded complexes with morphisms chain homotopy classes of
maps) and perform a Verdier localization.

Definition 1.10. The triangulated category DMeff
gm(k) of effective geometric mo-

tives is the localization of Kb(Cor(k)) with respect to the thick subcategory gener-
ated by the following two types of complexes

• (Homotopy invariance) For X ∈ Smk, the complex ([X × A1]
pX−−→ [X])

• (Mayer-Vietoris) For X ∈ Smk, suppose we have open subschemes jU :
U → X, jV : V → X with X = U ∪ V , giviing the inclusions jUU∩V :
U ∩ V → U , jVU∩V : U ∩ V → V , and the complex

[U ∩ V ]
(jUU∩V ,−j

V
U∩V )−−−−−−−−−→ [U ]⊕ [V ]

jU+jV−−−−→ [X]

We let M eff : Smk → DMeff
gm(k) be the functor sending X to the image of [X],

concentrated in degree 0, in DMeff
gm(k)
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DMeff
gm(k) is a triangulated tensor category. We have the reduced motive M̃ eff(P1)

of P1, namely, the complex
[P1]

p−→ [Spec k]

with [P1] in degree zero and p : P1 → Spec k the projection. Define Z(1) by

Z(1) := M̃ eff(P1)[−2].

We define the triangulated tensor category of geometric motives, DMgm(k) by

DMgm(k) := DMeff
gm(k)[(−⊗ Z(1))]\,

where (−)\ means adjoin summands corresponding to idempotent endomorphisms.
The objects Z(n) := Z(1)⊗n, n ∈ Z are called the pure Tate motives. Concretely,

the objects of DMgm(k) are of the form M(m) := M ⊗ Z(m) for some m ∈ Z, and
with morphism groups

HomDMgm(k)(M(m), N(n))

:= colimr≥max(−m,−n)HomDMeff
gm(k)(M(r +m), N(r + n))

Z(0) := M(Spec k) is the unit for the tensor structure.
A fundamental theorem of Voevodsky (the cancellation theorem) reduces the

study of DMgm(k) to DMeff
gm(k)

Theorem 1.11. For all M,N ∈ DMeff
gm(k), the stabilization map

HomDMeff
gm(k)(M,N)→ HomDMeff

gm(k)(M(1), N(1))

is an isomorphism. In particular, the canonical functor DMeff
gm(k)→ DMgm(k) is a

fully faithful embedding.

LetM : Smk → DMgm(k) be the composition ofM eff with the canonical functor.
The reason for inverting − ⊗ Z(1) is the same as for the case of Chow motives: if
k has characteristic zero, then M(X) is a dualizable object in DMgm(k) for all
X ∈ Smk; if k has characteristic p > 0, this also holds after inverting p. Just as
for MotCH, if X is smooth and projective of dimension d, then

M(X)∨ = M(X)(−d)[−2d].

Note that the object corresponding to the Lefschetz motive is M̃(P1) = Z(1)[2].

1.2.3. Motivic cohomology. Via DMgm(k), we have the categorical construction of
motivic cohomology.

Definition 1.12. For X ∈ Smk, define

Hp(X,Z(q)) := HomDMgm(k)(M(X),Z(q)[p])

More generally, for an arbitrary M ∈ DMgm(k), we set

Hp(M,Z(q)) := HomDMgm(k)(M,Z(q)[p])

Immediate consequences of this construction include:

1. Functoriality. Each morphism f : M → N in DMgm(k) induces f∗ : Hp(N,Z(q))→
Hp(M,Z(q)). In particular, each f : Y → X in Smk induces f∗ := M(f)∗ :
Hp(Y,Z(q))→ Hp(X,Z(q)).
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2. Mayer-Vietoris. Let X = U ∪ V be an open cover of X ∈ Smk. Then we have
the long exact Mayer-Vietoris sequence

. . .→ Hp−1(U ∩ V,Z(q))→ Hp(X,Z(q))

→ Hp(U,Z(q))⊕Hp(V,Z(q))→ Hp(U ∩ V,Z(q))→ . . .

Homotopy invariance. Let p : A1
k → Spec k be the projection. For each M ∈

DMgm(k), the map IdM ⊗M(p1) : M ⊗M(A1)→M and the induced map (IdM ⊗
M(p1))∗ : Hp(M,Z(q))→ Hp(M ⊗M(A1,Z(q)) is an isomorphism. In particular,
p∗X : Hp(X,Z(q))→ Hp(X × A1,Z(q)) is an isomorphism for all X ∈ Smk.

Together with the Mayer-Vietoris sequence, this gives the extended homotopy
property: For p : E → X an affine space bundle, the map p∗ : Hp(X,Z(q)) →
Hp(E,Z(q)) is an isomorphism.

Variants:
Mod n motivic cohomology. For a postive integer n, define Z/n(q) as the complex

Z(q)
×n−−→ Z(q)

concentrated in degrees -1, 0, define

Hp(X,Z/n(q)) := HomDMgm(k)(M(X),Z/n(q)[p])

and define Hp(M,Z/n(q)) for M ∈ DMgm(k) similarly. We thus have the long
exact coefficient sequence

. . .→ Hp−1(M,Z/n(q))→ Hp(M,Z(q))
×n−−→ Hp(M,Z(q))→ Hp(M,Z/n(q))→ . . .

and the motivic Milnor sequence

0→ Hp(M,Z(q))/n→ Hp(M,Z/n(q))→ Hp+1(M,Z(q))n−torsion → 0

Motivic cohomology with support: Let i : Z → X be a closed subscheme and
j : U → X the open complement, with X ∈ Smk. Define the motive with support
MZ(X) as the complex

M(U)
M(j)−−−→M(X)

in degrees -1, 0, and

Hp
Z(X,Z(q)) := Hp(MZ(X),Z(q)); Hp

Z(X,Z/n(q)) := Hp(MZ(X),Z/n(q)).

This gives us the distinguished triangle

M(U)
M(j)−−−→M(X)→MZ(X)→M(U)[1];

applying HomDMgm(k)(−,Z(q)[∗]) gives the long exact motivic cohomology sequence

. . .→ Hp
Z(X,Z(q))→ Hp(X,Z(q))→ Hp(U,Z(q))→ Hp+1

Z (X,Z(q))→ . . .

One can also define motivic homology:

Hp(X,Z) := Hom(Z(0),M(X)[p]); Hp(M,Z) := Hom(Z(0),M [p]).

We will revisit this construction later on, in the context of Suslin homology.

2. Lecture 2: Triangulated categories of motivic sheaves

2.1. The category of effective motivic sheaves.
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2.1.1. Presheaves and sheaves with transfer. Voevodsky realized that it is usu-
ally impossible to compute morphisms in a localization. To understand the cat-
egory DMeff

gm(k), he constructed a sheaf-theoretic version, DMeff(k), that contains
DMeff

gm(k) as the full subcategory of compact objects. We follow his treatment, de-
tailed in [?], but with some refinements introduced later on by Cisinski-Déglise [?].
Mainly this involves replacing Voevodsky’s use of bounded above derived categories
D− with the unbounded versions.

Definition 2.1. 1. A presheaf with transfers (PST) on Smk is an additive functor

P : Cor(k)op → Ab

We let PST(k) denote the category of such additive functors.
2. A PST P is a Nisnevich sheaf with transfers (NST) if the restriction of P to
Smk ⊂ Cor(k) is a Ninevich sheaf.
3. For X ∈ Smk, we let Ztr(X) denote the representable functor HomCor(k)(−, X)
on Cor(k).

Note that Ztr(X) is an NST, and we consider the NSTs as a full subcategory
NST(k) of PST(k). PST(k) is an abelian category, with exactness determined
objectwise. Here are some basic facts about these categories

Proposition 2.2. 1. NST(k) is a full abelian subcategory of PST(k), and the
inclusion NST(k) ↪→ PST(k) admits the exact left adjoint P 7→ PNis of Nisnevich
sheafification.
2. Each P ∈ PST(k) admits the canonical surjection

⊕X∈Smk,α∈P (X)Ztr(X)→ P

via the Yoneda isomorphism HomPST(k)(Ztr(X), P ) = P (X). Applying this to the
kernel of the above map and iterating gives the canonical left resolution

L•(P )→ P → 0

with each Ln(P ) a direct sum of representable PSTs.
3. Define Ztr(X)⊗tr Ztr(Y ) := Ztr(X × Y ), and extend to arbitrary PSTs by

P ⊗tr Q := H0(L•(P )⊗tr L•(Q))

This makes PST(k) into an abelian tensor category. Extend this to NST(k) by
sheafification:

N ⊗tr
Nis M := (N ⊗tr M)Nis

This makes NST(k) into an abelian tensor category.
4. Let N be an NST. Then for each n, the cohomology presheaf X 7→ Hn(XNis, N)
has a canonical structure of a PST.

The property (4) is not at all obvious.
A crucial property enjoyed by a PST is that of homotopy invariance and for

NSTs that of strict homotopy invariance

Definition 2.3. 1. A PST P is homotopy invariant if the map p∗X : P (X) →
P (X × A1) is an isomorphism for all X ∈ Smk.
2. An NST N is strictly homotopy invariant if for each n the PST Hn((−)Nis, N)
is homotopy invariant, i.e., for each X ∈ Smk, the map p∗X : Hn(XNis, N) →
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Hn((X×A1)Nis, N) is an isomorphism. Let HI(k) ⊂ NST(k) be the full subcategory
of strictly homotopy invariant NSTs.

Parallel to the definition of DMeff
gm(k), one defines DMeff(k) as a localization. Let

T be a triangulated category admitting arbitrary (set-indexed) direct sums. Recall
that a localizing subcategory of T is a full subcategory, closed under arbitrary (set-
indexed) direct sums; a localizing subcategory is automatically a thick subcategory
in the sense of Verdier, in other words, closed under direct summands.

Definition 2.4. DMeff(k) is defined to be the localization of D(NST(k)) by the lo-

calizing subcategory generated by objects of the form Cone(K∗⊗Ztr(A1
k))

IdK∗⊗Ztr(p)−−−−−−−−→
K∗), where p : A1

k → Spec k is the projection. Let Q : D(NST(k)) → DMeff(k) be
the quotient functor.

The category DA1(NST(k)) is defined as the full subcategory of the derived
category D(NST(k)) with objects the complexes K∗ whose cohomology sheaves
hn(K∗)Nis are strictly homotopy invariant.

2.1.2. The Suslin complex. The category PST(k) has an internal Hom with

Hom(P,Q)(X) := HomPST(k)(P ⊗tr Ztr(X), Q)

This defines internal Hom functors on NST(k), C(PST(k)), C(NST(k)) and on
D(NST(k)).

Given a smooth cosimplicial scheme [n] 7→ Dn and K∗ ∈ C−(PST(k)) this gives
us the simplicial object [n] 7→ Hom(Ztr(Dn),K∗), and the associated mapping
complex K∗(D∗) ∈ C−(PST(k)), with

K∗(D∗)−n(X) := ⊕mKm(X ×Dm+n),

and with differential the usual alternating sum of face maps. For K∗ ∈ C(PST(k)),
write K∗ as a colimit of subcomplexes (using the canonical truncation τ≤n): K∗ =
colimn→+∞τ≤nK

∗ and define K∗(D∗) = colimn→+∞(τ≤nK
∗)(D∗).

Definition 2.5. For K∗ ∈ C(PST)), define

CSus(K∗) := K∗(∆∗k)

Extend to K∗ ∈ C(PST(k)) by taking the colimit of the CSus(τ≤nK∗), where
τ≤nK

∗ → K∗ is the canonical truncation.

Using the triangulation of ∆n
k ×∆1

k
∼= ∆n

k × A1
k again, one shows that for K∗ ∈

C(PST(k)), the cohomology presheaves hi(CSus(K∗)) are homotopy invariant.

Definition 2.6. For K∗ ∈ C(PST(k)), the nth Suslin homology HSus
n (K∗) is de-

fined by
HSus
n (K∗,Z) := Hn(CSus(K∗)(Spec k)).

For X ∈ Smk, we write HSus
n (X,Z) for HSus

n (Ztr(X),Z).

Here are the central results about homotopy invariant PSTs and the Suslin com-
plex.

Theorem 2.7. 1. If P is a homotopy invariant PST, then PNis is strictly homo-
topy invariant and the canonical map PZar → PNis is an isomorphism.
2. HI(k) ⊂ NST(k) is an abelian subcategory, closed under extensions in NST(k).
3. Let K∗ ∈ C(PST(k)) be a complex in PST(k). Suppose that the Nisnevich
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sheafification K∗Nis is acyclic. Then the Zariski sheafification of the Suslin complex
CSus(K∗)Zar is also acyclic.
4. For K∗ ∈ C(PST(k)), the canonical map K → CSus(K∗) induces an isomor-
phism Q(K)→ Q(CSus(K∗)) in DMeff(k).

We won’t say anything about the proofs, except that some of the geometric
input is a version of Chow’s moving lemma, and the transfer structure is crucial;
the analogous properties are not valid for arbitrary presheaves or Nisnevich sheaves.

2.2. Motivic complexes. The Suslin complex construction gives us presheaves of
complexes Z(q)∗ on Smk that will turn out to be the strictly functorial versions of
Bloch’s cycle complexes that satisfy (most of) the Beilinson-Lichtenbaum axioms.

Definition 2.8. For q ≥ 0 be an integer, Z(q)∗ is the presheaf of complexes on
Smk defined by

Z(q)∗(X) := CSus(Ztr(q))∗(X);

Explicitly, Ztr(q) := Ztr(1)⊗
tr
Nisq and

Z(q)n(X) = ⊕mZtr(q)m(∆m−n ×X)

Remark 2.9. Recall that

Ztr(q)[2q] = (Ztr(P1)→ Ztr(Spec k))⊗q ∼
q-iso
oo [ker(Ztr(P1)→ Ztr(Spec k))]⊗q,

with Ztr(P1) in degree 0, so Ztr(q) is quasi-isomorphic to a complex supported in
degree 2q, and thus Z(q)∗ is quasi-isomorphic to a complex supported in degrees
≤ 2q. Actually, we shall see that Hn(Z(q)∗) = 0 for n > q.

2.2.1. The localization theorem and the embedding theorem. The Suslin complex
construction gives an effective way of understanding the localizationQ : D(NST(k))→
DMeff(k). We note that CSus(K∗)Nis is in DA1(NST(k)) for K∗ in C(PST(k)).

Theorem 2.10. Sending K∗ ∈ C(PST(k)) to CSus(K∗)Nis ∈ DA1(NST(k)) defines
an exact functor

RCSus : D(NST(k))→ DA1(NST(k))

that is left adjoint to the inclusion DMeff(k) ↪→ D(NST(k)). Moreover, RCSus

factors through the localization Q : D(NST(k)) → DA1(NST(k)) and defines an
equivalence of DA1(NST(k)) with DMeff(k), and

RCSus(Ztr(X)) = CSus(Ztr(X))Nis

for all X ∈ Smk.

We henceforth identify DMeff(k) with the subcategoryDA1(NST(k)) ofD(NST(k))
via RCSus.

Via the localization functor Q = RCSus : D(NST(k)) → DMeff(k), the ten-
sor structure ⊗tr

Nis on D(NST(k)) induces a tensor structure on DMeff(k), making
DMeff(k) a tensor triangulated category, with internal Hom.

We let Z(n) = CSus(Ztr(n))Nis, Z(X) := CSus(Ztr(X))Nis and note that Z(0) is
the unit for the tensor structure on DMeff(k). For an object M of DMeff(k), we
write M(n) for M ⊗ Z(n).
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Corollary 2.11. 1. For X ∈ Smk and n ∈ Z, we have a canonical isomorphism

HSus
n (X,Z) ∼= HomDMeff (k)(Z(0)[n],Z(X))

Moreover HSus
n (X,Z) = 0 for n < 0.

2. Suppose X ∈ Smk is a union of open subschemes U, V . Then we have a long
exact Mayer-Vietoris sequence

. . .→ HSus
n (U ∩ V,Z)→ HSus

n (U,Z)⊕HSus
n (V,Z)→ HSus

n (X,Z)

∂−→ HSus
n−1(U ∩ V,Z)→ . . .→ HSus

0 (X,Z)→ 0

Proof. (1) uses the adjoint property:

HomDMeff (k)(Z(0)[n],Z(X)) = HomDA1 (NST(k))(C
Sus(Ztr(Spec k))[n], CSus(Ztr(X)))

= HomD(NST(k))(Ztr(Spec k)[n], CSus(Ztr(X))Nis)

= Hn(CSus(Ztr(X))(Spec k))

= HSus
n (X,Z)

Since CSus(Ztr(X))(Spec k) is concentrated in homological degrees ≥ 0, we have
HSus
n (X,Z) = 0 for n < 0.
For (2), we have the right exact sequence in PST(k)

0→ Ztr(U ∩ V )→ Ztr(U)⊕ Ztr(V )
jU∗+jV ∗−−−−−−→ Ztr(X)

but the last map is not in general a surjective map of presheaves, for example,
if X is irreducible and U and V are proper open subsets, then the diagonal in
Ztr(X)(X) ⊂ ZdimX(X ×X) is not in the image. However, Ztr(Y ) is a Nisnevich
sheaf for all Y ∈ Smk and we claim that the map Ztr(U) ⊕ Ztr(V ) → Ztr(X) is a
surjective map in NST(k).

Indeed, the points in the Nisnevich topology are hensel rings OhY,y for y ∈ Y ∈
Smk. Given Z ∈ Ztr(X)(OhY,y), we have the restriction Zy ∈ Ztr(X)(k(y)), and

|Zy| = {z1, . . . , zs}

with the zi closed points in Xk(y). We can arrange the zi so that z1, . . . , zr is in
Uk(y) and zr+1, . . . , zs is in Vk(y). Since OhY,y is hensel, we can write the support of
Z as a disjoint union

|Z| = qsi=1Zi

with Zi∩Xk(y) = zi (as closed subset). Since OhY,y is local, this says that Zi ⊂ UOh
Y,y

for i = 1, . . . , r and Zi ⊂ VOh
Y,y

for i = r + 1, . . . , s, thus Z is in the image of
Ztr(U)(OhY,y)⊕ Ztr(V )(OhY,y)→ Ztr(X)(OhY,y).

Letting Ztr
(X) denote the presheaf image of jU∗ + jV ∗, we thus have the exact

sequences in PST(k)

0→ Ztr(U ∩ V )→ Ztr(U)⊕ Ztr(V )
jU∗+jV ∗−−−−−−→ Ztr

(X)→ 0

0→ Ztr
(X)→ Ztr(X)→ Ztr(X)/Ztr

(X)→ 0

and (Ztr(X)/Ztr
(X))Nis = 0.
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By Theorem 2.7(3), CSus(Ztr(X)/Ztr
(X))(Spec k) is acyclic, and as CSus(−)

transforms exact sequences in PST(k) to termwise exact sequences in C−(PST(k)),
we see that

CSus(Ztr
(X))(k)→ CSus(Ztr(X))(k)

is a quasi-isomorphism and thus

CSus(Ztr(U∩V ))(k)→ CSus(Ztr(U))(k)⊕CSus((Ztr(V ))(k)
jU∗+jV ∗−−−−−−→ CSus(Ztr(X))(k)

extends to a distinguished triangle in D−(Ab). This yields the desired Mayer-
Vietoris sequence by taking homology. �

We have the evident map of triangulated categories Kb(Cor(k)) → D(NST(k))

sending [X] to Ztr(X), and the localization map q : Kb(Cor(k))→ DMeff
gm(k).

Theorem 2.12 (Embedding theorem). There is a unique exact functor i : DMeff
gm(k)→

DMeff(k) sending M eff(X) to Z(X) := CSus(Ztr(X))Nis for each X ∈ Smk, and
making the diagram

Kb(Cor(k)) //

q

��

D(NST(k))

RCSus

��

DMeff
gm(k)

i // DA1(NST(k))

commute. Moreover i is a fully faithful embedding with dense image.

Proof. We need to show that the map X 7→ CSus(Ztr(X))Nis sends the two com-
plexes defining the localization q to acyclic complexes in DA1(NST(k)). The cone
of the map CSus(Ztr(X×A1))

p∗−→ CSus(Ztr(X)) is acyclic, by the homotopy invari-
ance of the Suslin complex construction, hence the same holds for the Nisnevich
sheafification. The argument used in the proof of Corollary 2.11(2) shows that the
Mayer-Vietoris sequence

CSus(Ztr(U ∩ V ))Nis → CSus(Ztr(U))Nis ⊕ CSus((Ztr(V ))Nis → CSus(Ztr(X))Nis

gives a quasi-isomorphism of CSus(Ztr(X))Nis with the cone of the map CSus(Ztr(U∩
V ))Nis → CSus(Ztr(U))Nis ⊕ CSus((Ztr(V ))Nis, so the total complex of the Mayer-
Vietoris sequence is zero in D(NST(k)). This shows the existence of the exact
functor i.

To show that i is fully faithful, one relies on results of Neeman. One considers
a triangulated category T admitting arbitrary small direct sums and its full sub-
category T0 of compact objects. If L0 is a thick subcategory of T0, generating a
localizing subcategory L of T , then Neeman shows that the induced exact functor

T0/L0 → T /L

is fully faithful with dense image. Taking T = D(PST(k)), we need to consider the
localizing subcategory L generated by complexes Ztr(X × A1) → Ztr(X) together
with all P ∈ PST(k) such that PNis = 0, and then show that L is generated by the
complexes Ztr(X × A1)→ Ztr(X) and the “Mayer-Vietoris” complexes

Ztr(U ∩ V )→ Ztr(U)⊕ Ztr(V )
jU∗+jV ∗−−−−−−→ Z̄tr(X)

Letting L′ be the localizing subcategory generated by these two types of complexes,
we need to show that if PNis = 0, then P is in L′.
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For such a P , consider the functors

Hn(X) := HomD(PST(k))/L′(Ztr(X), P [n]).

It suffices to show that Hn(X) = 0 for all X ∈ Smk and all n if PNis = 0.
Since L′ contains all Mayer-Vietoris complexes, the family {Hn(X)} admits long

exact Mayer-Vietoris sequences for Zariski open covers, so we need only show that
the Zariski sheafifications Hn

Zar of the presheaves X 7→ Hn(X) are all zero. But the
Hn(−) are PSTs, hence by ***, we have

Hn
Zar = Hn

Nis

An element α ∈ Hn(X), i.e., a morphism α : Ztr(X) → P [n] in D(PST(k))/L′,
is represented by a diagram in D(PST(k))

Ztr(X)

##

P [n]

g
}}

K

such that the cone of g is in L′. The proof of homotopy invariance for CSus shows
that the canonical map K → CSus(K) is an isomorphism in D(PST(k))/L′. More-
over, PNis = 0 implies that CSus(P )Nis = 0 in D(NST(k)). Since the functor
CSus(−) inverts the elements of L′, this implies that CSus(K)Nis = 0 in D(NST(k))
as well. But then there is a Nisnevich cover U → X such that the composition

Ztr(U)→ Ztr(X)→ K → CSus(K)

is zero, hence the pullback of α to Hn(U) is zero, and thus Hn
Nis = 0. �

Corollary 2.13. For X ∈ Smk, p, q ∈ Z, q ≥ 0, we have a canonical isomorphism

Hp(X,Z(q)) ∼= Hp(XNis,Z(q)∗)

natural in X.

Proof.

Hp(X,Z(q)) := HomDMeff
gm(k)(M

eff(X),Z(q)[p])

∼= HomDMeff (k)(Z(X),Z(q)[p])

∼= HomDMeff (k)(C
Sus(Ztr(X))Nis, C

Sus(Ztr(q))Nis[p])

∼= HomD(NST(k)(Ztr(X),Z(q)∗[p])

∼= HomD(ShNis(Smk))(Z(X)Nis,Z(q)∗[p])

∼= HomD(ShNis(X))(ZX ,Z(q)∗[p])

= Hp(XNis,Z(q)∗)

�

2.3. Motivic cohomology and the higher Chow groups. We have seen an
interpretation of Suslin homology as maps in DMeff(k). However, Suslin homol-
ogy is not closely related to Bloch’s higher Chow groups; they have quite different
functoriality. There is a natural map HSus

0 (X,Z)→ CH0(X), which is always sur-
jective, and even an isomorphism if X is proper. To connected motivic cohomology
with the higher Chow groups, we need to introduce some new NSTs; these play an
important role in duality.
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2.3.1. Equidimensional cycles and quasi-finite cycles.

Definition 2.14. Let X be a finite type k-scheme. For an integer r ≥ 0 and
a Y ∈ Smk, define zequi,r(X)(Y ) to be the subgroup of zdimY+r(Y × X) freely
generated by integral closed subschemes W ⊂ Y × X such that the projection
pY : W → Y is equi-dimensional of relative dimension r. Precisely, this means that
for each point y ∈ Y and each irreducible component Z of W ∩ y × X, we have
dimk(y)Z = r.

We let zqfin(X)(Y ) := zequi,0(X)(Y ).

Remarks 2.15. 1. zqfin(X)(Y ) is the subgroup of zdimY (Y ×X) freely generated by
integral closed subschemes W ⊂ Y ×X that are quasi-finite over Y .
2. Y 7→ zequi,r(X)(Y ) extends canonically to an NST: For Z ∈ Cork(Y ′, Y ) we
have

Z∗ : zequi,r(X)(Y )→ zequi,r(X)(Y ′)

defined by the usual formula for correspondences

Z∗(W ) := pY ′×X∗(p
∗
Y×X(W ) · pY ′×Y (Z))

This makes sense even for X not smooth, by taking local closed embeddings of X in
a smooth k-scheme M , taking the intersection product on Y ′ × Y ×M and noting
that the resulting cycle is supported in Y ′ × Y ×X.

Definition 2.16. For X ∈ Smk, define Z(X)c to be the image in DMeff(k) of the
NST zqfin(X), i.e., Z(X)c := CSus(zqfin(X))Nis.

We have the localization distinguished triangle:

Theorem 2.17. Let i : W → X a closed immersion in Schk, with open complement
j : U → X, and let r ≥ 0 be an integer, giving the right exact sequence in NST(k)

0→ zequi,r(W )
i∗−→ zequi,r(X)

j∗−→ zequi,r(U)

Then the induced sequence

CSus(zequi(W ))Nis
i∗−→ CSus(zequi(X))Nis

j∗−→ CSus(zequi(U))Nis

extends canonically to a distinguished triangle in DMeff(k) (after inverting chark if
this is positive).

For the proof, we need the extension of Theorem 2.7(3) to the setting of the cdh
topology. This is the Grothendieck topology on Schk generated by the Nisnevich
topology and the coverings given by “abstract blow-up squares”: a cartesian square

Y ′
i′ //

��

Y

f

��

X ′
i // X

with i and i′ closed immersions, f proper and inducing an isomorphism f0 : Y \Y ′ →
X \X ′. For such a square, the map X ′ q Y → X is a cdh cover.

We have the fundamental result:

Theorem 2.18. Take K ∈ C(PST) and suppose that the cdh-sheafification Kcdh

is acyclic Then CSus(K)Zar is acyclic (after inverting chark if this is > 0).
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To apply this to the localization theorem, note that for Y ∈ Smk and z ∈
zequi,r(U)(Y ) ⊂ Zr+dimY (U ×Y ). there is a blow-up Y ′ → Y of Y (with Y ′ smooth
in characteristic zero) such that the proper transform z′ of z to Zr+dimY (U×Y ′) has
closure in X × Y ′ that is in zequi,r(X)(Y ′). In other words coker(j∗)cdh = 0, which
shows that j∗(CSus(zequi,r(X)))Nis) ↪→ CSus(zequi,r(U))Nis is a quasi-isomorphism,
as desired. In positive characteristic, one needs to use alterations.

We consider the Suslin complex CSus(zequi,r(X)). In homological degree n,
CSus(zequi,r(X))n(k) is the subgroup of Zn+r(∆

n
k × X) freely generated by inte-

gral closed subschemes W ⊂ ∆n
k ×X that are equi-dimensional of dimension r over

∆n
k . In particular each such W intersects F × X properly for each face F of ∆n

k ,
so we have a natural inclusion of (homological) complexes

CSus
∗ (zequi,r(X))(k) ↪→ zr(X, ∗)

2.3.2. Moving lemmas of Suslin and Friedlander-Lawson.

Theorem 2.19. In the following, we invert chark if chark > 0.
1. Suppose X is a finite-type k-scheme. Then the inclusion CSus

∗ (zequi,r(X))(k) ↪→
zr(X, ∗) is a quasi-isomorphism.
2. Z(X)c ∈ DMeff(k) is in the image of an object M c(X) of DMeff

gm(k).
3. There are canonical isomorphisms

CSus(zequi,r(X)) ∼= Hom(Z(r)[2r],Z(X)c)

in DMeff(k).
4. For X ∈ Smk of pure dimension d over k, we have

M(X)∨ = M c(X)(−d)[−2d]

in DMgm(k).

Some comments on (1). The proof is in two parts. For X affine, Suslin con-
structs an explict homotopy, i.e., a geometric moving lemma, that “moves” cycles
in zr(X,n) to cycles in zequi,r(X)(∆n). For this, he takes a closed embedding
X ↪→ ANk for some N and reduces to the case X = AN . Let ∂∆n ⊂ ∆n be the
union of the codimension one faces, a divsor defined by hn := t0 · t1 · · · tn = 0.
Suslin constructs inductively in n maps Φn : ∆n × AN → ∆n × AN over AN with
the property that Φn ◦ (δni × Id) = (δni × Id) ◦ Φn−1 for all i = 0, . . . , n, n ≥ 1,
starting with Φ0 = IdAN This implies that the maps Φn−1 on the codimension one
faces of ∆n fit together to give a map ∂Φn : ∂∆n × AN → ∂∆n × AN over AN ,
∂Φn(t, y) = (∂φn(t, y), y). Since ∂∆n×AN is a closed subscheme of the affine space
∆n × AN ∼= An+N , we can extend ∂φn to a map ∂̃φn : ∆n × AN → ∆n × AN . Let
pn be a map pn : ∆n → AN and define Φn by

Φn(t, y) := (∂̃φn(t, y) + hn(t) · p(t), y)

Suslin shows that for a given finite set of cycles {Z1, . . . , Zs} ⊂ zr(X,n), by
choosing the pn = (pn,1(t), . . . , pn,N (t)) with the pn, general polynomials of suffi-
ciently high degree (inductively in n), the cycles Φn(t, y)∗(Zi) are all in zequi,r(X)(∆n).
Using this, he shows that, for each finitely generated subcomplex zr(X, ∗)W ⊂
zr(X, ∗), there is a map of complexes

Φ∗W : zr(X, ∗)W → C∗Sus(zequi,r(X))(k)
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such that the composition of Φ∗W with the inclusion C∗Sus(zequi,r(X))(k) ↪→ zr(X, ∗)
is homotopic to the inclusion zr(X, ∗)W ↪→ zr(X, ∗). This shows that C∗Sus(zequi,r(X))(k) ↪→
zr(X, ∗) is a quasi-isomorphism, at least for X affine.

Now take X to be a finite type k-scheme and we prove (1) by noetherian induc-
tion, the case dimension zero being trivially true. Let Y ⊂ X be a proper closed
subscheme such that X \ Y is affine. Applying Theorem 2.17 and evaluating at
Spec k, this gives us the commutative diagram of distinguished triangles in D(Ab)

CSus
∗ (zequi,r(Y ))(k)

i∗ //

��

CSus
∗ (zequi,r(X))(k)

j∗
//

��

CSus
∗ (zequi,r(X \ Y ))(k)

��

// CSus
∗ (zequi,r(Y ))(k)[1]

��

zr(Y, ∗)
i∗ // zr(X, ∗)

j∗
// zr(X \ Y, ∗) // zr(Y, ∗)[1]

the bottom row being a distinguished triangle by Bloch’s moving lemma. Induction
shows the 1st and 4th vertical arrows are quasi-isomorphisms and the affine case
shows that the 3rd vertical arrow is a quasi-isomorphism as well.

For (3), this relies on Voevodsky’s extension of the Friedlander-Lawson moving
lemma. For X ∈ Schk, Y,U ∈ Smk, with U of dimension u, we have the map

zequi,s(X)(U × Y )→ zequi,s+u(X × U)(Y )

by noting that if W ⊂ X × U × Y is equidimensional of relative dimension s over
Y ×U , then W is equidimensional of relative dimension s+u over Y . The induced
map

CSus(zequi,s(X))(U × Y )→ CSus(zequi,s+u(X × U))(Y )

thus gives the map of complexes of presheaves

(2.1) Hom(Ztr(U), CSus(zequi,s(X)))→ CSus(zequi,s+u(X × U))

Theorem 2.20. The map (2.1) defines a quasi-isomorphism in C(NST(k)).

We won’t give a proof of this, except to note that the original result of Friedland-
Lawson on “moving families of algebraic cycles of bounded degree” [?, Theorem 3.7]
says as a special case that, given smooth (irreducible) varieties X,Y ∈ Smk with
Y projective, and W ∈ Zn(X × Y ) a dimension n cycle with n ≥ dimY , then W is
rationally equivalent to some W ′ ∈ zequi,n−dimY (X × Y ) ⊂ Zn(X × Y ). This fact
is the starting point of the proof of the above result.

Taking U = (P1)r, and understanding Ztr(r)[2r] as a summand of Ztr((P1)r)
gives the isomorphism in DM eff(k)

Hom(Z(r)[2r], CSus(zequi,s(X))) ∼= CSus(zequi,r+s(X)))

proving (3).
The proof of (4) in case X projective is just by noting that Z(X)c = Z(X) for

projective X, and use duality in DMgm(k). The general result (assuming resolution
of singularities) follows by taking a smooth projective compactification of X with
normal crossing divisor as complement, using the localization and Gysin triangles
(see below) and induction on dimension.
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2.3.3. Gysin triangle, the projective bundle formula and Chern classes. Let i : W →
X be a closed immersion in Schk with open complement j : U → X. Taking r = 0
in Theorem 2.17 gives the distinguished localization triangle in DMeff

gm(k)

M c(W )
i∗−→M c(X)

j∗−→M c(U)
∂−→M c(W )[1]

If X and W are smooth, and W has codimension c in X, we have the Gysin
distinguished triangle

M(U)
j∗−→M(X)

i∗−→M(W )(c)[2c]→M(U)[1]

The map i∗ gives us the map

i∗ : Hp(W,Z(q))→ Hp+2c(X,Z(q + c))

by applying i∗ to HomDMgm(k)(−,Z(q + c)[p+ 2c]).
We also have first Chern classes for line bundles, the projective bundle formula

and the resulting theory of Chern classes for vector bundles: For L → Y a line
bundle, we have c1(L) ∈ H2(Y,Z(1)) = HomDMeff

gm(k)(M(Y ),Z(1)[2]) defined by

c1(L) := s∗s∗(1X)

where s : X → L is the 0-section and 1X ∈ H0(X,Z(0)) is the class of the map
M(X)→M(Spec k) = Z(0) induced by the structure map p : X → Spec k.

For V → X a rank n+1 vector bundle over X ∈ Smk, with associated projective
space bundle q : P(V )→ X and tautological quotient line bundle O(1), we have

M(P(V )) ∼= ⊕ni=0M(X)(i)[2i]

where one maps M(P(V )) to M(X)(i)[2i] by

M(P(V ))
×c1(O(1))i−−−−−−−→M(P(V ))(i)[2i]

q∗−→M(X)(i)[2i]

This induces the usual isomorphism

Hp(P(V ),Z(q)) ∼= ⊕ni=0H
p−2i(X,Z(q − i))

This extends the pushforward i∗ for closed immersions to pushforward for pro-
jective morphisms f : Y → X by factoring f (of relative dimension d) as Y i−→ Pn×
X

p−→ X with i a closed immersion and p the projection. Then f∗ : Hp(Y,Z(q))→
Hp−2d(X,Z(q − d)) is the composition of

i∗ : Hp(Y,Z(q))→ Hp+2n−2d(Pn×X,Z(q+n−d)) = ⊕ni=0H
p+2n−2d−2i(Pn×X,Z(q+n−d−i))

with projection on the factor i = n,

⊕ni=0H
p+2n−2d−2i(Pn ×X,Z(q + n− d− i))→ Hp−2d(X,Z(q − d)).

Finally, one has the blow-up formula: for Z ⊂ X codimension c, with X,Z
smooth, then

M(BlZX) ∼= M(X)⊕c−1
i=1 M(Z)(i)[2i]

This follows by comparing the Gysin sequence for Z ⊂ X and E ⊂ BlZX, where E
is the exceptional divisor, and using the projective bundle formula for M(E).
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2.3.4. Motivic cohomology and higher Chow groups.

Corollary 2.21. For X ∈ Smk, we have a natural isomorphism Hp(X,Z(q)) ∼=
CHq(X, 2q − p).

Proof. Suppose X is integral of dimension d over k and that q ≤ d. Then

Hp(X,Z(q)) := HomDMgm(k)(M(X),Z(q)[p])

= HomDMgm(k)(Z(0),M(X)∨ ⊗ Z(q)[p])

∼= HomDMgm(k)(Z(0),M c(X)⊗ Z(q − d)[p− 2d])

∼= HomDMeff
gm(k)(Z(d− q)[2d− 2q],M c(X)[p− 2q])

∼= HomDMeff (k)(Z(0),Hom(Z(d− q)[2d− 2q],M c(X))[p− 2q])

∼= HomDMeff (k)(Z(0), CSus(zequi,d−q(X))[p− 2q])

= HomD(NST(k))(Ztr(k), CSus(zequi,d−q(X))[p− 2q])

= H2q−p(C
Sus(zequi,d−q(X))(k))

= H2q−p(z
q(X, ∗)) = CHq(X, 2q − p).

If q > d, we replace X with X × Aq−d and use homotopy invariance for the higher
Chow groups. �

Corollary 2.22. 1. For X ∈ Smk and q ≥ 0 an integer, H2q+i(X,Z(q)) = 0 for
i > 0.
2. For X ∈ Smk, Hp(X,Z(0)) = 0 for p 6= 0 and H0(X,Z(0)) = H0(X,ZZar)
3. For X ∈ Smk,

Hp(X,Z(1)) =


Pic(X) for p = 2

Γ(X,O×X) for p = 1

0 else.

4. For X ∈ Smk and q > 0 an integer, Hp(X,Z(−q)) = 0 for all p ∈ Z
5. For F a field, Hn+i(F,Z(n)) = 0 for i > 0

Proof. (1) H2q+i(X,Z(q)) = CHq(X,−i) = 0 for i > 0.
(2) Hp(X,Z(0)) = CH0(X,−p). For X integral, the complex z0(X, ∗) is Z in every
degree with differentials alternating between 0 and the identity, so CH0(X,−p) = 0
except for p = 0 and CH0(X, 0) = Z.
(3) Hp(X,Z(1)) = CH1(X, 2− p). Bloch shows that

CH1(X,n) =


CH1(X) = Pic(X) for n = 0

Γ(X,O×X) for n = 1

0 else.

(4) We may assume X is integral.

Hp(X,Z(−q)) = HomDMgm(k)(M(X),Z(−q)[p]) = HomDMeff
gm(k)(M

eff(X)(q)[2q],Z(0)[p+2q]]).

Note that M eff(X)(q)[2q] is a summand of M eff(X × Pq) = ⊕qi=0M(X)(i)[2i], and
thus Hp(X,Z(−q)) is the corresponding summand of Hp+2q(X × Pq,Z(0)). This
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latter group is zero for p+2q 6= 0, and the projectionM eff(X×Pq)→M eff(X)(0)[0]
induces the isomorphism

p∗X : Z = H0(X,Z(0))→ H0(X × Pq,Z(0)) = Z

Thus HomDMeff
gm(k)(M

eff(X)(q)[2q],Z(0)) = 0 if q > 0.

(5) Changing k to F , we have

Hn+i(F,Z(n)) = CHn(SpecF, n− i)

Note that zn(SpecF, n− i) is a subgroup of Zn(∆n−i
F ). But since ∆n−i

F has dimen-
sion n − i over F , there are no subvarieties of codimension n on ∆n−i

F if i > 0, so
zn(SpecF, n− i) = 0 and hence CHn(SpecF, n− i) = 0 for i > 0. �

2.3.5. Chow motives and Voevodsky motives.

Corollary 2.23. For X,Y smooth and projective over k, we have a natural iso-
morphism

HomDMeff
gm(k)(M(X),M(Y )[i]) ∼=∼= H2dimY+i(X×Y,Z(dimY )) ∼= CHdimX(X×Y,−i)

In particular, for i > 0, HomDMeff
gm(k)(M(X),M(Y )[i]) = 0. For i = 0,

HomDMeff
gm(k)(M(X),M(Y )) ∼= CHdimX(X × Y, 0) = CHdimX(X × Y )

and composition in DMeff
gm(k) transforms to composition of correspondences.

Proof. Since Y is projective, we have zqfin(Y ) = Ztr(Y ), so M c(Y ) = M(Y ) and
thus M(Y )∨ = M(Y )(−d)[−2d], where d is the dimension of Y over k. Thus

HomDMeff
gm(k)(M(X),M(Y )[i]) = HomDMgm(k)(M(Y )∨ ⊗M(X),Z(0)[i])

= HomDMgm(k)(M(X × Y ),Z(d)[2d+ i])

= H2d+i(X × Y,Z(d))

= CHd(X × Y,−i)

To show that composition in DMeff
gm(k) corresponds to composition of corre-

spondences (in cycles mod rational equivalence) one uses the Friedlander-Lawson
moving lemma to show that CHdimX(X×Y ) is generated by cycles each component
of which is finite over X. For such cycles, the composition as correspondences is
exactly the composition in Cor(k), hence in DMeff

gm(k). �

Corollary 2.24. Sending a smooth projective X to M(X) ∈ DMgm(k) extends to
a fully faithful embedding

MotCH(k)→ DMgm(k)

2.4. Realizations. Realizations form an important tool for the study of motives
and its use in arithmetic. Here we sketch the construction of the de Rham and
Betti realizations, and say a word about étale reallizations.

For the de Rham realization, the main point is to show that the sheaf Ωp−/k
on Smk extends to a Nisnevich sheaf with transfers. For simplicity, we work in
characteristic zero. The main point is the following result. For a normal k-scheme
Y , we let Ωp∗∗Y/k denote the double dual of ΩpY/k; of course if Y is smooth over k,
Ωp∗∗Y/k = ΩpY/k.
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Lemma 2.25. Let f : W → X be a finite Galois cover of normal schemes, with
Galois group G. Then the map f∗ : Ωp∗∗X/k → f∗Ω

p∗∗
W/k identifies Ωp∗∗X/k with the

G-invariants (f∗Ω
p∗∗
W/k)G.

For a general finite map of k-schemes f : W → X, with X smooth, this gives
rise to a transfer map of sheaves

TrW/X : f∗Ω
p
W/k → ΩpX/k

as follows: We assume W and X are irreducible. Let g : W ∗ →W be the (normal)
Galois closure of the normalization WN of W , with induce map h : W ∗ → X, let
d denote the degree of W ∗ → WN and let G be the Galois group of W ∗ over X.
Define TrW/X as the composition

f∗Ω
p
W/k

g∗−→ h∗Ω
p∗∗
W∗/k

(1/d)TrG−−−−−−→ (h∗Ω
p∗∗
W∗/k)G ∼= ΩpX/k

Here TrG is the map η 7→
∑
g∈G g

∗η.
For W ⊂ X × Y an integral closed subscheme, finite over X, we thus have

W∗ : ΩpY/k(Y )→ ΩpX/k(X)

sending η ∈ ΩpY/k(Y ) to TrW/X(p∗Y η). One then shows that this makes the de Rham
complex X 7→ (Ω∗X/k, d) into a complex in PST(k), and the well-known properties
of de Rham cohomology make this into an object of DA1(NST(k)), i.e., an object
Ω∗/k of DMeff(k), representing de Rham cohomology via

HomDMeff (k)(M
eff(X),Ω∗/k[n]) ∼= Hn(XNis,Ω

∗
X/k) =: Hn

dR(X/k).

Similarly, sending pX : X → Spec k Smk to the derived pushforward RpX∗Ω∗X/k
extends to a functor

<dR : DMeff
gm(k)op → D(k −Vec)

and then extends further to

<dR : DMgm(k)op → D(k −Vec)

noting that <dR(M eff(X) ⊗ Z(1)) ∼= <dR(M eff(X)) (there is a shift in the Hodge
filtration, but that’s another story).

The Betti realization is done similarly, using a Čech complex for the constant
sheaf Z (or whatever). The point is that for p : W → Y finite with Y smooth (all
over C), one can take a Leray open cover U of Y (C) that pulls back to a Leray open
cover of W . Moreover, for each UI = ∩i∈IUi the locus over which p−1(UI) → UI
is not étale has codimension ≥ 1 in UI , so the complement is connected, and thus
any section of the constant sheaf on the “étale” locus extends uniquely to a section
over UI .

Finally, there are versions of étale realizations. One can repeat the basic idea
for the Betti realization using the étale topology. Alternatively, one can repeat the
construction of DMeff(k), replacing the Nisnevich topology with the étale topol-
ogy. One can also have a theory in sheaves of Z/n-modules. For k of finite n-
cohomological dimension, with n prime to the characteristic of k if this is positive,
the resulting category DMét(k;Z/n) is equivalent to the derived category of n-
torsion étale sheaves on the small étale site of Spec k, while the étale theory with
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Q-coefficients is equivalent to DM(k;Q). In particular, the change of topology
functor gives the mod n étale realization map

Hp(X,Z/n(q))→ Hp(X,Z/n(q)ét) ∼= Hp
ét(X,µ

⊗q
n )

Huber [?] has given a quite general construction of realization functors, which
extend the constructions sketched above. In particular, she constructs exact tensor
realization functors corresponding to rational mixed Hodge structures and contin-
uous Q`-étale cohomology from DMgm(k) (for the MHS, one needs to be given an
embedding k ↪→ C):

<MHS : DMgm(k)→ DMHS(Q)

<ét,` : DMgm(k)→ Dét,ctn(Q`, k)

Here DMHS(Q) is Beilinson’s triangulated tensor category of Q-mixed Hodge com-
plexes and Dét,ctn(Q`, k) is Ekedahl’s triangulated tensor category of constructible
complexes of Q`-étale sheaves on Spec (k). Neither of these is the derived category
of an abelian category.

For X ∈ Smk, these induce natural maps

<p,qMHS(X) : Hp(X,Q(q))→ Hp
MHS(XC,Q(q))

with Hp
MHS(X,Q(q)) the Q-mixed Hodge structure on the cohomology of the C-

scheme XC and

<p,qét,`(X) : Hp(X,Q(q))→ Hp
ctn,ét(X,Q`(q))

with Hp
ctn,ét(X,Q`(q)) continuous `-adic étale cohomology, compatible with the

various structures described above, e.g., products, projective pushforward, Gysin
sequences, Chern classes, etc.

3. Lecture 3: Motivic cohomology and motivic stable homotopy

3.1. The Beilinson-Lichtenbaum conjectures. The Beilinson-Lichtenbaum con-
jectures are what started off the whole search for a motivic cohomology. All but
one of them (the so-called Beilinson-Soulé vanishing conjectures) have up to now
been verified. Most of these are covered by the existence of suitable triangulated
categories of motives over a general base-scheme, which is an extension of the con-
structions we have described above, and which will be discussed below. The most
difficult part of these conjectures (aside from the vanishing conjectures) concerns
the comparison map from motivic to étale cohomology

Hp(X,Z/n(q))→ Hp
ét(X,µ

⊗q
n )

for the case X = SpecF , F a field, and n prime to the characteristic of F , and
asserts that this map is an isomorphism for p ≤ q. This part of the overall set of
conjectures of Beilinson and Lichtenbaum is often referred to as “the” Beilinson-
Lichtenbaum conjectures.

Note that the isomorphism Hq(F,Z(q)) ∼= KM
q (F ) (described in §1.1.5) and the

fact that Hq+1(F,Z(q)) = 0 shows that Hq(F,Z/n(q)) = KM
q (F )/n, so the case

p = q of the Beilinson-Lichtenbaum conjecture asserts that the map (the Galois
symbol)

(3.1) KM
q (F )/n→ Hq

ét(X,µ
⊗q
n )

is an isomorphism for all F and for all n prime to charF . This map is defined
concretely by first noting that Kummer theory gives the isomorphism F×/(F×)n ∼=
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H1
ét(F, µn). Tate showed long ago that the map F× ⊗ F× → H2

ét(F, µ
⊗2
n ) sends

elements a⊗ (1− a) to zero, so using products again gives the map (3.1).
The assertion that (3.1) is an isomorphism (for all F and all n prime to charF ) is

now known as the Bloch-Kato conjecture, although it is just part of the Beilinson-
Lichtenbaum conjectures (which were stated about 12 years earlier). In fact, the
Bloch-Kato conjecture implies the Beilinson-Lichtenbaum conjecture:

Theorem 3.1 (Suslin-Voevodsky, Geisser-Levine). Let F0 be the prime field and
let ` be a prime 6= charF0. Suppose the Galois symbol KM

n (F ) → Hn
ét(F, µ

⊗n
` ) is

surjective for all fields F ⊃ F0. Then the change of topology map

Hp(F,Z/n(q))→ Hp
ét(F,Z/n(q))

is an isomorphism for all fields F ⊂ F0, and all p, q with 0 ≤ q ≤ n and p ≤ q.

For q = 2, the Bloch-Kato conjecture is the theorem of Merkurjev-Suslin the-
orem (proven some 14 years before Bloch and Kato formulated their “conjecture”
and about two years before the Beilinson-Lichtenbaum conjectures arrived). An
essential part of their argument considers the Severi-Brauer variety SB(a, b, ζ)
for a, b ∈ F× and ζ a primitive `th root of 1. The main point is to show that
the kernel of the map KM

2 (F )/` → KM
2 (F (SB(a, b, ζ)))` is exactly the Z/`-span

of the symbol {a, b}; this being before the advent of motivic cohomology, they
use Quillen K-theory instead, via Matsumoto’s theorem: KM

2 (F ) = K2(F ), and
Gillet’s Riemann-Roch theorem for higher K-theory that allows them to compare
the relatively easy to understand K2(SB(a, b, ζ)) with K2(F (SB(a, b, ζ)).

A few years later, Merkurjev-Suslin and independently Levine used a “relativiza-
tion” method to extend this to give an isomorphism

H1(F,Z/n(2)) ∼= H1
ét(F, µ

⊗2
n )

(although their result was phrased in terms of the so-called “indecomposable K3”,
as motivic cohomology was not yet around). This of course was before the general
Bloch-Kato ⇒ Beilinson-Lichtenbaum result mentiond above was proven and in a
sense was its precursor.

For q = 3, Rost extended the Merkurjev-Suslin method to prove the Bloch-Kato
conjecture in weight 3. After a long development, Voevodsky put together his work
on DM together with his construction of motivic Steenrod operations plus results
of Rost and others to prove the Beilinson-Lichtenbaum conjectures in general, first
for n a power of 2, and then the general case.

The case ` = 2 was handled first (by Voevodsky, relying on some results of Rost).
The proof is again based (at least in part) on the method used by Merkurjev-
Suslin for q = 2, but is more complicated. The Severi-Brauer varieties that play
a central role as splitting varieties for a symbol {a, b} mod ` in the proof of the
Merkurjev-Suslin are replaced by the Pfister neighbor quadrics Qa associated to
an element a = (a1, . . . , an) ∈ (k×)n. Voevodsky also streamlines the argument
by reducing to showing that the étale version of motivic cohomology, Lichtenbaum
motivic cohomology Hp

L(−,Z(q)) vanishes on fields in bi-degree (n + 1, n). The
Merkurjev-Suslin arguments involving the Severi-Brauer became showing that, for
a = (a1, . . . , an) ∈ (k×)n, one has:

(1) The symbol {a1, . . . , an} ∈ KM
n (k) goes to zero in KM

n (k(Qa)/`.
(2) The map Hn+1

L (k,Z(n))→ Hn+1
L (k(Qa),Z(n)) is injective.
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Having these facts at hand, the argument is exactly as for the Merkurjev-Suslin
theorem: Starting with k, one takes the maximal prime to 2 extension k′ of k,
and then take the compositum of k′ with all fields k(Qa) for a = (a1, . . . , an)

with {a1, . . . , an} 6= 0 in KM
n (k)/`, forming the field k1. Then repeat, forming

the field k∞ with the property that KM
n (k∞)/` = 0, and with Hn+1

L (k,Z(n)) →
Hn+1
L (k∞,Z(n)) injective. In induction in n is used to show thatHn+1

L (F,Z(n)) = 0

if KM
n (F )/` = 0, so Hn+1

L (k,Z(n)) = 0.
The injectivity (2) is quite hard to prove, and relies on an intricate applica-

tion of the motivic Steenrod operations, as well as some deep results of Rost on
the motives of the quadrics Qa and a certain triviality of the motivic cohomology
H2n−1(Q,Z(n)) for Q a smooth n-dimensional quadric.

In a bit more detail, one main technical point is to show that Hn+1,n(Xa,Z(2)) =

0, where Xa is the Čech simplicial scheme [n] 7→ associatedtoQna associated to Qa.
Letting X̃a be the “reduced” version of Xa (cofiber of the map Xa,→ Spec k), this
is the same as the vanishing of Hn+2,n(X̃a,Z(2)). A sequence of Milnor operations
maps this group (injectively!) to H2n,2n−1

(X̃a,Z(2)) = H2n−1,2n−1

(Xa,Z(2)). This
latter group is a subgroup of H2n−1,2n−1

(Qa,Z(2)) and Rost’s injectivity theorem
show that pushforward by the structure map defines injectionH2n−1,2n−1

(Qa,Z) ↪→
H1(k,Z(1)) = k×.

But now this says the base-change to k̄ defines an injection

H2n−1,2n−1

(Qa,Z) ↪→ H2n−1,2n−1

(Qa ×k k̄,Z)

Running the construction in reverse, this says that

Hn+1,n(Xa,Z(2))→ Hn+1,n(Xa ×k k̄,Z(2))

is injective. But since Qa(k̄) 6= ∅, Xa ×k k̄ ∼ Spec k̄ and

Hn+1,n(Xa ×k k̄,Z(2)) ∼= Hn+1,n(k̄,Z(2)) ∼= CHn(k̄, n− 1)⊗ Z(2) = 0.

This is the essential point, the proof that Hn+1,n
L (k,Z(2)) → Hn+1,n

L (k(Qa),Z(2))
is injective, follows from this and the fundamental distinguished triangle relating
the ‘Rost motive” Ma) of Qa), M(Xa), and M(Xa)((2n?1?1)[2n?1]:

M(Xa)((2n?1?1)[2n − 2]→Ma)→M(Xa)→M(Xa)((2n?1?1)[2n?1].

The case of odd prime ` is treated in many way the same as for ` = 2, but
numerous technical problems arise, for instance, there is no nice collection of smooth
projective varieties that play the role of the Severi-Brauer varieties for weight two,
and the Pfister neighbor quadrics in higher weight for ` = 2.

The construction of the Steenrod operations, an integral part of the proof, re-
quires the introduction of the motivic stable homotopy category and understanding
its relation with the triangulated category of motives; in the case q = 2, the use of
the Steenrod operations was in part replaced by using K-theory and the Riemann-
Roch theorem.

3.2. The motivic stable homotopy category.
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3.2.1. The unstable and stable motivic homotopy categories. Subsequent to Voevod-
sky’s construction of the category DMeff(k), Morel and Voevodsky developed a par-
allel A1 homotopy theory. In essence, this is much simpler, although this requires
more input from the theory of model categories to carry out the construction; we
will suppress this crucial technical side in our overview.

First of all, correspondences no longer play a role, and parallel to classical ho-
motopy theory, one relies on presheaves of simplicial sets rather than presheaves of
complexes of abelian. One can work over an arbitrary noetherian base-scheme S.
Formally, one has the presheaf category PshsSets(SmS) where SmS is the category
of smooth separated S-schemes of finite type, and sSets is the category of simplicial
sets; this is called the category of spaces over S, Spc(S). Working in the Nisnevich
topology again, one inverts morphisms P → Q that are weak equivalences (i.e. in-
duce bijections on π0 and all homotopy groups πn(−, x) for n ≥ 1 and all choice of
base-point) of simplicial sets on all Nisnevich stalks Px → Qx, where a Nisnevich
points is some x ∈ X ∈ Smk, and Px is the colimit of P (U) over all (U, u)→ (X,x)
Nisnevich neighborhoods of x. Formally, one can write Px = P (OhX,x) where OhX,x
is the henselization of the local ring OX,x,

OhX,x = colim(U,u)→(X,x)OU,u

In addition, one inverts all morphisms p∗ : P → PA1

, where for a presheaf
P : Smop

S → sSets, PA1

is the presheaf X 7→ P (X ×A1), and p∗ is the collection of
maps p∗X : P (X) → P (X × A1). This gives us the A1 unstable homotopy category
H(S) with canonical morphism SmS → H(S).

A striking feature of this construction is that it allows the mixing of algebraic ge-
ometry and classsical homotopy theory: algebraic geometry enters via the Yoneda
functor SmS → Spc(S), sending X presheaf with value at Y ∈ SmS the constanct
simplicial set on X(Y ), while classical homotopy theory enters via the constant
presheaf functor c : sSets → Spc(S). Moreover, the presheaf category Spc(S)
inherits all the usual constructions of topology, especially limits, colimits, prod-
ucts (resp. smash products) and internal Homs, by operating objectwise on the
presheaves (resp. pointed presheaves). For instance, we have the usual suspension
and loops functors, ΣS1 , ΩS1 , via X 7→ S1 ∧X , X 7→ HomSpc•(S)(S

1,X ). We have
the Nisnevich sheaves of “connected components” πNis

0 (X ) and πA1

0 (X), the first
being the sheaf associated to the presheaf U 7→ π0(X (U)) and the second the sheaf
associated to the presheaf U 7→ [U,X ]H(S). Higher homotopy sheaves are defined
similarly, with identities for X ∈ Spc•(S)

πA1

n (X ) = πA1

0 (ΩnS1X ); πNis
n (X ) = πNis

0 (ΩnS1X ).

One uses the theory of model categories to show in the first place that such
a localization exists, and to yield cofibrant and fibrant models in Spc(S), with
the property that homotopy classes of map P → Q, for P cofibrant and Q fibrant,
compute the morphisms [P,Q]H(k). The particular choice of model structure has the
representable presheavesX forX ∈ SmS being cofibrant, but the fibrant models are
much more difficult to understand. Replacing simplicial sets with pointed simplicial
sets sSets• yields the category of pointed spaces over S, Spc•(S), and the pointed
A1 homotopy category H•(S).

Another notable feature of H•(S) is the two-parameter family of “spheres”. Let
Gm = (A1 \ {0}, {1}) be the “Tate circle” and for a ≥ b ≥ 0, let Sa,b := Sa−b ∧G∧bm .



THREE LECTURES ON MOTIVIC COHOMOLOGY 31

We have corresponding suspension functors X 7→ Σa,bX := X ∧ Sa,b and loops
functors X 7→ Ωa,bX := Hom(Sa,b,X ). We also have the canonical isomorphism
(P1,∞) ∼= S2,1 in H•(S), given the natural isomorphism ΣnP1

∼= Σ2n,n. This gives
us as well the bigraded family of homotopy sheaves

πA1

a,b(X ) := πA1

0 (Ωa,bX )

and the similarly defined Nisnevich version πNis
a,b (X ).

The stable theory is modeled on the classical case of suspension spectra of spaces,
except that we replace S1-suspension with P1-suspension, yielding the category of
P1-spectra over S, SpP1(S). This is the category of sequences E∗ := (E0, E1, . . .),
En ∈ Spc•(S), together with bonding maps εn : ΣP1En → En+1, where ΣP1En :=
En∧(P1,∞). A morphism E∗ → F∗ in SpP1(S) is a collection of maps fn : En → Fn
in Spc•(S) that commute with the respective bonding maps. A map f : E∗ → F∗
is an A1 stable weak equivalence if the fn induce isomorphisms of A1 homotopy
sheaves

colimnfn∗ : colimnπ
A1

a+2n,b+n(En)→ colimnπ
A1

a+2n,b+n(Fn)

for all a, b ∈ Z Here the inductive system {πA1

a+2n,b+n(En)} has transition maps

πA1

a+2n,b+n(En) ∼= πA1

a+2n+2,b+n+1(ΣP1En)
εn∗−−→ πA1

a+2n+2,b+n+1(En+1)

and is defined for all n sufficiently large (depending on a, b): n ≥ max(0,−b, b −
a). The A1 stable homotopy category is then defined by inverting stable weak
equivalences in SpP1(S). This gives a triangulated tensor category, with translation
functor induced by ΣS1 and with the suspension functors Σa,b defined and invertible
for all a, b ∈ Z. As in the classical case one has the adjoint pair of infinite P1-
suspension/infinite P1-loops functors

Σ∞P1 : H•(S)
//
SH(S) : Ω∞P1oo

3.2.2. The category DM(k). One might ask, what about inverting Z(1) in DMeff(k)?
Here the naive Gabriel-Zisman localization DMeff(k)[(−⊗Z(1))−1] is not really what
one wants, as this category lacks arbitrary homotopy limits and colimits. A better
construction is to be guided by homotopy theory, in forming the category of Z(1)[2]-
spectra, as above. Replacing Spc•(S) with C(NST(k)), H•(S) with DMeff(k), and
ΣP1 with − ⊗tr Ztr(1)[2], we arrive at the triangulated tensor category DM(k),
the localization of Z(1)[2]-spectra in C(NST(k)) with respect to stable A1-weak
equivalence. The functor − ⊗ Z(1)[2] on DM(k) is invertible and we have the
adjoint pair of exact tensor functors

Σ∞Z(1)[2] : DMeff(k)
//
DM(k) : Ω∞Z(1)[2]oo

The situation here is a bit different as in A1-homotopy theory, in that the translation
functor M 7→ M [1] is already invertible on triangulated category DMeff(k), while
H•(S) does not have a triangulated structure and ΣS1 is not invertible.

The embedding theorem extends to show that

DMgm(k)→ DM(k)

is an exact, fully faithful embedding with dense image, identifying DMgm(k) with
the subcategory of compact objects in DM(k).
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Remarks 3.2. 1. DM(k) is a triangulated category admitting small coproducts.
Using the theory of symmetric spectra gives DM(k) the structure of tensor triangu-
lated category.
2. A general theory of stablization due to Hovey has a different definition of stable
weak equivalence, but in the case of DMeff(k), Jardine (and also Voevodsky) shows
that this agrees with the “naive” notion of stable weak equivalence described above.

3.2.3. DM(k) and the category of HmotZ-modules. The objects of SH(S) represent
bi-graded cohomology theories on SmS in the following way: Given E ∈ SH(S)
and U ∈ SmS , define

Ea,b(U) := [Σ∞P1U+,Σ
a,bE]SH(S)

Properties built into SH(S) give: contravariant functoriality, Mayer-Vietoris prop-
erties and homotopy invariance to this bi-graded family of abelian groups. If E
admits the structure of a commutative monoid in SH(S), then E∗∗(U) has a bi-
graded ring structure, with a certain form of graded commutativity.

Conversely, given a bi-graded “cohomology theory” U 7→ H∗∗(U) := ⊕a,bHa,b(U)
on SmS , one says that H∗∗ is represented by some E ∈ SH(S) if there is a natural
isomorphism of functors H∗∗ ∼= E∗∗.

Motivic cohomology on Smk is in fact represented by a certain object HmotZ ∈
SH(k), constructed as the sequence

HmotZ := (EM(CSus(Ztr(0)),EM(CSus(Ztr(1)[2]), . . . ,EM(CSus(Ztr(n)[2n]), . . .)

Here EM is the Eilenberg-MacLane functor from C(Ab) to usual suspension spec-
tra, and the bonding maps are defined by applying EM to the maps of complexes

CSus(Ztr(n)[2n])⊗tr Z(1)[2]→ CSus(Ztr(n+ 1)[2n+ 2])

induced by the natural map Hom(X,A) ⊗tr B → Hom(X,A ⊗tr B). One also
uses the natural map (graph) of the representable functor Y 7→ HomSmk

(Y,X) to
Ztr(X) to define the map

EM(CSus(Ztr(n)[2n])) ∧ (P1,∞)→ EM(CSus(Ztr(n)[2n])⊗tr Z(1)[2]);

putting these together gives the bonding map

ΣP1EM(CSus(Ztr(n)[2n]))→ EM(CSus(Ztr(n+ 1)[2n+ 2]))

One can give HmotZ the structure of an E∞ object in SpP1(k), which gives
us the homotopy category of HmotZ-modules, HmotZ −Mod, and the free-forget
adjunction

HmotZ ∧ − : SH(k)
//
HmotZ−Mod : EMmotoo

In fact, we have the following fundamental theorem

Theorem 3.3 (Röndigs-Østvær). Suppose that k has characteristic zero. Then
there is a natural isomorphism of tensor triangulated categories HmotZ −Mod ∼=
DM(k).

This has been extended to characteristic p > 0, after inverting p, by Hoyois-
Kelly-Østvær.

This connection of DM(k) with SH(k) has opened the way to a more “homotopi-
cal” approach to motives; we give a few examples.
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3.2.4. The motivic Steenrod algebra. We have already mentioned the motivic Steen-
rod algebra and its role in the proof of the Beilinson-Lichtenbaum/Bloch-Kato con-
jectures. In classical homotopy theory, the mod ` Steenrod algebra is simply the
(graded) endomorphism ring of the spectrum HZ/` representing mod ` singular
cohomology in the stable homotopy category SH, that is

⊕n[HZ/`,ΣnHZ/`]SH

The dual Steenrod algebra is the mod ` homology of HZ/`, that is

⊕nπsn(HZ/` ∧HZ/`)

where πsn is stable homotopy: πsn(E) := [ΣnS, E]SH and S is the sphere spectrum,
S := Σ∞S0.

Making the obvious changes yields the motivic version: The motivic sphere
spectrum over S is SS : Σ∞P1S0

S , where S
0
S = S+, i.e., the base-scheme S with a

disjoint copy of S added as a base-point. E-cohomology of a spectrum F ∈ SH(S)
is Ea,b(F ) := [F,Σa,bE]SH(S), E-homology is Ea,b(F ) := [Σa,bSS , E∧F ]SH(S), giving
us the mod ` motivic Steenrod algebra HmotZ/`∗∗(HmotZ/`) and the dual Steenrod
algebra HmotZ/`∗∗(HmotZ/`).

Voevodsky was able to construct explicit elements in HmotZ/`∗∗(HmotZ/`) in
case S = Spec k, k a field of characteristic zero, and show that these give a
presentation of HmotZ/`∗∗(HmotZ/`) that is remarkably similar to the classical
case. The main difference is that the classical Steenrod algebra is an algebra over
HZ/`∗(pt) = Z/` (concentrated in degree 0), whereas the motivic version is an
algebra over HmotZ/`∗(k) = ⊕a,bHa(Spec k,Z/`(b)). The classical version acts
trivially on the cohomology of a point, while (in general) the motivic version acts
non-trivially on the motivic cohomology of k, which makes the algebra structure
more complicated. However, Voevodsky’s generators correspond directly to the
standard classical generators, and fulfill essentially the same relations (the Adem
relations). The most notable difference occurs at ` = 2. Here −1 ∈ k× shows up
in two different places, one as the element τ ∈ H0(k,Z/2(1)) = µ2(k) = {±1} and
a second time as ρ ∈ H1(k,Z/2(1)) = k×/k×2 as the class of -1 modulo squares.
τ behaves differently from −1 ∈ H0(pt,Z/2) because, if k does not contain

√
−1,

the map H0(k,Z/4(1)) → H0(k,Z/2(1)) is the trivial map, so the Bockstein of τ
is non-zero. Similarly H1(pt,Z/2) = 0 but if k does not contain

√
−1, then ρ 6= 0,

so we have this additional “-1” to consider (in fact, the Bockstein of τ is ρ).
This was all extended to the positive characteristic case, at least for ` 6= chark,

by Hoyois-Kelly-Østvær. The motivic Steenrod algebra shows up in many other
foundational computations, for instance, in the theorem of Hopkins-Morel-Hoyois,
describing the relationship of HmotZ with Voevodsky’s algebraic cobordism spec-
trum MGL.

Frankland and Spitzweck have shown that the characteristic zero version of the
mod p motivic Steenrod algebra is a summand of the actual motivic Steenrod
algebra over a field of characteristic p. The lack of a complete understanding of the
mod p motivic Steenrod algebra in characteristic p is a significant hinderance to
our understanding of motivic homotopy theory in positive or mixed characteristic.

3.2.5. Voevodsky’s slice tower. Besides motivic cohomology, algebraic K-theory is
also represented in SH(k). One of the main results of Morel-Voevodsky about the
unstable categoryH(k) is that the infinite Grassmannian Gr(∞,∞) := colimm,nGr(m,n+
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m) represents Quillen’s algebraic K-theory for X ∈ Smk:

Kn(X) ∼= [ΣnS1X+,Gr(∞,∞)× Z]H(k)

Voevodsky promotes this to representability in SH(k) by the P1-spectrum KGL

KGL := (Gr(∞,∞)× Z,Gr(∞,∞)× Z, . . .)

with bonding map given by the maps

Gr(m,∞) ∧ (P1,∞)→ Gr(m,∞)

representing the virtual bundle p∗1Em⊗p∗2O(1)−p∗1Em−p∗2O(1)+O on Gr(m,∞×P1.
His idea is to define a version of the classical Postnikov tower, again replacing usual
connectivity with P1-connectivity.

More precisely, let SHeff(k) be the localizing subcategory of SH(k) generated by
suspension spectra Σ∞P1X+, X ∈ Smk, and for n ∈ Z, let ΣnP1SHeff(k) denote the
translate of SHeff(k) by the n-fold suspension functor. This gives the filtration of
SH(k) by localizing subcategories

. . . ⊂ Σn+1
P1 SHeff(k) ⊂ ΣnP1SHeff(k) ⊂ . . . ⊂ SH(k)

The inclusion in : ΣnP1SHeff(k) → SH(k) admits the right adjoint rn : SH(k) →
ΣnP1SHeff(k), defining the truncation functor fn := inrn : SH(k) → SH(k); using
the above tower gives the natural transformations fn+1 → fn → IdSH(k), giving the
tower of endofunctors on SH(k)

. . .→ fn+1 → fn → . . .→ IdSH(k)

Taking the layers in this tower gives the distinguished triangles

fn+1 → fn → sn → fn+1[1]

Voevodsky calls sn the nth slice. Applying this to an E ∈ SH(k) gives the tower in
SH(k)

. . .→ fn+1E → fnE → . . .→ E

and the distinguished triangles

fn+1E → fnE → snE → fn+1E[1]

The tower is called the slice tower for E, and gives rise to the slice spectral
sequence

Ep,q2 (n)(X ) := (s−qE)p+q,n(X )⇒ Ep+q,n(X )

In general, this tower does not have good convergence properties, due in part to the
fact that the filtration Σ∗P1SHeff(k) of SH(k) is neither exhaustive nor separated, so
in using the slice spectral sequence, one needs to address convergence.

The classical Postnikov tower in SH can be constructed in the same way, re-
placing ΣnP1 with ΣnS1 and taking SHeff to be the localizing subcategory generated
by Σ∞T+, for T an arbitrary simplicial set. This is also the subcategory of −1-
connected spectra, i.e. spectra E such that πsmE = 0 form < 0, and ΣnS1SHeff is the
subcategory of n− 1-connected spectra (πsmE = 0 for m < n). The corresponding
nth slice of E is the Eilenberg-MacLane spectrum EM(πnE,n), characterised by

πsmEM(πnE,n) =

{
πnE for m = n

0 else.
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and the spectral sequence is

Ep,q2 (X) := Hp(X,π−qE)⇒ Ep+q(X)

This is the Atiyah-Hirzebruch spectral sequence, so one often calls Voevodsky’s
version the motivic Atiyah-Hirzebruch spectral sequence. In the classical case, the
filtration is separated, so one has much better convergence properties.

The some basic results regarding the slice tower are

Theorem 3.4. 1. snHmotZ = 0 for n 6= 0 and s0HmotZ = HmotZ.
2. snKGL = ΣnP1HmotZ

The first result con be promoted to

Corollary 3.5. For each E ∈ SH(k), snE has a canonical structure of an HmotZ-
module

Thus, we have the homotopy motive πmot,nE ∈ DMeff(k), with

snE = ΣnP1EMmot(πmot,nE) = EMmot(πmot,nE ⊗ Z(n)[2n])

and we can rewrite the slice spectral sequence as

Ep,q2 (n)(X) := Hp−q(X,πmot,−qE(n))⇒ Ep+q,n(X )

For E = KGL and n = 0, this gives

Ep,q2 (n)(X) = Hp−q(X,Z(−q))⇒ KGLp+q,0(X) = K2q−p(X).

Via the isomorphism Hp−q(X,Z(−q)) ∼= CH−q(X,−p − q), this agrees with the
E2- reindexed Bloch-Lichtenbaum/Friedlander-Suslin spectral sequence described
in §??.

3.2.6. The algebraic Hopf map. The classical stable Hopf map is the element of
πs1(S) induced by the generator ηtop : S3 → S2 of π3(S2). ηtop has a purely algebraic
representative, as the quotient map (C2 \ {0}, {(0, 1)} → (CP1,∞) identifying the
Riemann sphere CP1 with C2\{0}/C×. We let η : (A2\{0}, (0, 1))→ (P1,∞) be the
corresponding map in H•(k). Noting that (A2 \ {0}, (0, 1)) ∼= S3,2, (P1,∞) ∼= S2,1,
this gives us the stable version η ∈ πA1

1,1(Sk), the stable algebraic Hopf map. η is
closely related to the automorphism τ : Sk → Sk induced by the exchange-of-factors
symmetry τP1,P1 : P1 ∧ P1 → P1 ∧ P1, by the identity

τ = Id + η ◦ ρ = Id + ρ ◦ η,
where ρ : S0

k → Gm is the map sending the non-basepoint of S0
k to −1. In addition,

we have
η(1 + τ) = 0

After inverting 2, we can decompose Sk into the τ +1 and −1 eigenspaces, via
the idempotents (1−τ)/2, (1+τ)/2. Since Sk is the unit for the monoidal structure
on SH(k), this decomposes SH(k)[1/2] as SH(k)[1/2] = SH(k)+ × SH(k)−, with

SH(k)+ := ker((1− τ)/2 : SH(k)[1/2]→ SH(k)[1/2]);

SH(k)− = ker((1 + τ)/2 : SH(k)[1/2]→ SH(k)[1/2])

Thus SH(k)+ ⊂ SH(k)[1/2] is the η-torsion subcategory, and SH(k)− ⊂ SH(k)[1/2]
is the η-local subcategory SH(k)[1/2, η−1].

For k ⊂ C, we have the topological C-realization
<C : SH(k)→ SH
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sending Σ∞P1X+ to Σ∞S1X(C)+. Clearly <C(η) is the usual Hopf map in πs1(S) ∼= Z/2.
However, if k ⊂ R, we have a corresponding real realization

<R : SH(k)→ SH

sending Σ∞P1X+ to Σ∞S1X(C)+, and <R(η) is induced by the map ×2 : S1 → S1.
Thus, after inverting 2 everywhere, we see that <C factors through the projec-
tion SH(k)[1/2] → SH(k)+ and <R factors through the projection SH(k)[1/2] →
SH(k)−.

Returning to motivic cohomology, the Hopf map in DM(k) becomes a morphism
Z(2)[3]→ Z(1)[2], that is, an element of H−1(k,Z(−1)) = 0. Thus HmotZ[1/2] lives
in SH(k)+. This says that the slice tower on SH(k)− is the constant tower of identity
maps. Another way to see this is that ΣP1 = Σ2,1 = ΣGm

◦ ΣS1 . Since SHeff(k) is
triangulated, we have ΣnP1SHeff(k) = ΣnGm

SHeff(k), and in SH(k)−1 ρ : S → ΣGmS
and η : ΣGmS → S are inverse isomorphisms. Thus ΣnGm

SHeff(k)− = SHeff(k)− =

SH(k)−.

3.3. Six functors and motives over a base. As we mentioned at the beginning
of these lectures, Beilinson envisaged an abelian category of mixed motivic sheaves
on each scheme X, ShMot

X , with the Grothendieck six operations: the adjoint pair
of derived pushforward and pulback functors for each morphism f : Y → X

f∗ : D(ShMot
X )

//
D(ShMot

Y ) : f∗oo

the adjoint pair of exceptional functors

f! : D(ShMot
Y )

//
D(ShMot

X ) : f !
oo

internal Hom Hom(−,−) and tensor product −⊗−, satisfying the “usual” relations,
e.g., smooth and proper base-change isomorphisms, and a natural transformation
f! → f∗ that is an isomorphism for proper f .

As we have seen, the lack of the Beilinson-Soulé vanishing conjectures puts this
beyond the realm of the current technology, but one could hope for this type of
setup for triangulated categories of motives over a base-scheme X, DM(X). There
are a number of approaches for this, many of which rely on having the Grothendieck
six operations for the motivic stable homotopy categories X 7→ SH(X).

Without going into detail, the structure of the Grothenieck six operations for
X 7→ SH(X), X ∈ SchB , with B a fixed noetherian base-scheme of finite Krull
dimension, has been constructed by Ayoub, with a somewhat more streamlined
construction (extended to the equivariant case for a “tame” group G) by Hoyois. In
fact, this has been extended to such a theory on a fairly general subcategory of alge-
braic stacks by Khan-Ravi, and with a similar theory by Chirantan Choudhury. At
present however, the exceptional functors are limited to representable morphisms
(I’m told that this should not be a serious restriction, however the natural trans-
formation f! → f∗ really is restricted to representable f).

As we have seen, one can construct DM(k) as a homotopy category of HZ-
modules, so one could ask if there is a reasonable object HZS ∈ SH(S) for which
the category of HZS-modules would be a reasonable choice for DM(S). This is in
fact the case, and there are two such constructions, one by Markus Spitzweck, one
by Marc Hoyois.
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3.3.1. Motivic Borel-Moore homology over a base. We have seen that the higher
Chow groups agree with the theory given by the sheaves zequi,r(X) via the inclusion/quasi-
isomorphism CSus

∗ (zequi,r(X))(k) ⊂ zr(X, ∗) for r ≥ 0. Recalling that CSus(zequi,r(X) ∼=
Hom(Z(r)[2r],Z(X)c), we saw that

CHr(X,n) ∼= HomDMeff (k)(Z(0)[n], CSus(zequi,r(X)))

∼= HomDMeff (k)(Z(r)[2r + n],Z(X)c)

suggesting that it would have been better to consider CSus(zqfin(X))Nis as the Borel-
Moore motive of X and define ZB.M.(X) := CSus(zqfin(X))Nis and

HB.M.
p (X,Z(q)) := HomDMeff (k)(Z(p)[q],ZB.M.(X))) ∼= CHq(X, p− 2q).

In fact, for X of finite type over a Dedekind scheme B, one can give a reasonable
extension of the definition we gave for a field to yield a cycle complex zr(X/B, ∗)
and a good definition of motivic Borel-Moore homology

HB.M.
p (X/B,Z(q)) := Hp−2q(BZar, pX∗zq(∗))

Here pX∗zq(∗) is the Zariski sheaf onB associated to the presheaf U 7→ zq(p
−1
X (U)/U, ∗).

3.3.2. Beilinson motivic cohomology. Homotopy invariant algebraic K-theory is
represented in SH(S) by Voevodsky’s algebraicK-theory spectrum KGLS . Cisinski-
Déglise note that KGLS admits Adams operations Ψk and KGLSQ breaks up into
the kq-eigenspectra:

KGLSQ = ⊕iKGL
(i)
S ,

with KGL
(i)
S representing the ith graded piece of (rational) K-theory for the γ-

filtration (assuming S is regular). This gives them a nice commutative monoid
object (i.e. commutative ring spectrum) HБ

S := KGL
(0)
S ∈ SH(S)Q, whose module

category they call the category of Beilinson motives over S. This construction is
cartesian, that is, for f : Y → X a morphism of schemes, one has a canonical
isomorphism f∗HБ

X
∼= HБ

Y , which is essentially what one needs to induce a six-
functor formalism on S 7→ HБ

S −Mod from SH(−).

3.3.3. Spitzweck’s motivic cohomology. Spitzweck constructs a motivic cohomology
theory over an arbitrary base-scheme. The Bloch cycle complex gives rise to a gen-
eral version of Bloch’s higher Chow groups for finite type schemes over a Dedekind
domain, which has nice localization properties but has poor functoriality and lacks
a multiplicative structure. On the other hand, using the Bloch-Kato conjectures,
established by Voevodsky et al., the `-completed higher Chow groups are recognized
as a truncated `-adic étale cohomology, for ` prime to all residue characteristics.
The theorem of Geisser-Levine describes the p-completed higher Chow groups in
characteristic p > 0 in terms of logarithmic de Rham-Witt sheaves. Finally, there
is the good theory with Q-coefficients given by Beilinson motivic cohomology of
Cisinski-Déglise, as described above.

Each of these three theories: `-adic étale cohomology, the cohomology of the
logarithmic de Rham-Witt sheaves, and rational Beilinson motivic cohomology,
have good functoriality and multiplicative properties. Gluing the `-adic, p-adic and
rational theories together via their respective comparisons with the Bloch cycle
complex, Spitzweck constructs a theory with good functoriality and multiplicative
properties, and which is described by a presheaf of complexes on smooth schemes
over a given Dedekind domain as base-scheme. The corresponding theory agrees
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with Voevodsky’s motivic cohomology for smooth schemes over a perfect field, and is
given additively by the hypercohomology of the Bloch complex for smooth schemes
over a Dedekind domain (even in mixed characteristic), as described above.

Taking the base-scheme to be SpecZ, Spitzweck’s construction yields a represent-
ing object MZZ in SH(Z) and one can thus define absolute motivic cohomology for
smooth schemes over a given base-schemeX by pulling backMZZ toMZS ∈ SH(S).
The resulting motivic cohomology agrees with Voevodsky’s for smooth schemes of
finite type over a perfect base-field, and with the hypercohomology of the Bloch
cycle complex for smooth finite type schemes over a Dedekind domain. This gives
rise to triangulated category of motives DMSp(S) over a base-scheme X, defined as
the homotopy category of MZS-modules, and the functor S 7→ DMSp(S) inherits a
Grothendieck six-functor formalism from that of S 7→ SH(S).

3.3.4. Hoyois’ motivic cohomology. Spitzweck’s construction gives a solution to the
problem of constructing a triangulated category of motives over an arbitrary base,
admitting a six-functor formalism and thus yielding a good theory of motivic co-
homology. His construction is a bit indirect and it would be nice to have a direct
construction of a representing motivic ring spectrum HZS ∈ SH(S) for each base-
scheme S, still satisfying the cartesian condition.

Hoyois has constructed such a theory of motivic cohomology over an arbitrary
base-scheme by using a recent breakthrough in our understanding of the motivic
stable homotopy categories SH(S). This is a new construction of SH(S) more in
line with Voevodsky construction of DM(k). The basic idea is sketched in notes
of Voevodsky, which were realized in a series of works by Ananyevskiy, Garkusha,
Panin, Neshitov (authorship in various combinations). Building on these works,
Elmanto, Hoyois, Khan, Sosnilo and Yakerson construct an infinity category of
framed correspondences, and use the basic program of Voevodsky’s construction of
DM(k) to realize SH(S) as arising from presheaves of spectra with framed transfers,
just as objects of DM(k) arise from presheaves of complexes of sheaves with transfers
for finite correspondences. It is not our purpose here to give a detailed discussion of
this beautiful topic; we content ourselves with sketching some of the basic principles.

An integral closed subscheme Z ⊂ X × Y that defines a finite correspondence
from X to Y can be thought of a special type of a span via the two projections

Z
p1

~~

p2

��

X Y

For X and Y smooth and finite type over a given base-scheme S, a framed corre-
spondence from X to Y is also a span,

Z
p

~~

q

��

X Y

satisfying some conditions, together with some additional data (the framing). For
simplicity, assume that X is connected. The morphism p is required to be a finite,
flat, local complete intersection (lci) morphism, called a finite syntomic morphism
(the terminology was introduced by Mazur). The lci condition means that p factors
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as closed immersion i : Z → P followed by a smooth morphism f : P → X, and the
closed subscheme i(Z) of P is locally defined by exactly dimXP−dimXZ equations.
The morphism p factored in this way has a relative cotangent complex Lp admitting
a simple description, namely

Lp = [IZ/I2
Z

d−→ i∗ΩP/X ];

the conditions on i and p say that both IZ/I2
Z and i∗ΩP/X are locally free coherent

sheaves on Z of rank dimXP − dimXZ and dimXP , respectively. The perfect
complex Lp defines a point {Lp} in the space K(Z) defining the K-theory of Z of
virtual rank dimXZ; in the case of a finite syntomic morphism the virtual rank is
zero.

A framing for a syntomic map p : Z → X is a choice of a path γ : [0, 1]→ K(Z)
connecting {Lp} with the base-point 0 ∈ K(Z). For a framing to exist, the class
[Lp] ∈ K0(Z) must be zero, but the choice of γ is additional data. The morphism
q : Z → Y is arbitrary.

One has the usual notion of a composition of spans:

Z ′

p′

~~

q′

  

Y W

◦
Z

p

~~

q

��

X Y

:=

Z ×Y Z ′
p◦p1

zz

q′◦p2

$$
X W

which preserves the finite syntomic condition. However, one needs a higher cate-
gorical structure to take care of associativity constraints. The composition of paths
is even trickier, since we are dealing here with actual paths, not paths up to ho-
motopy. In the end, this produces an infinity category Corrfr(SmS) of framed
correspondences on smooth S-schemes, rather than a category; roughly speaking,
the composition is only defined “up to homotopy and all higher homotopies”.

Via the infinity category Corrfr(SmS), we have the infinity category of framed
motivic spaces, Hfr(S), this being the infinity category of A1-invariant, Nisnevich
sheaves of spaces on Corrfr(SmS). There is a stable version, SHfr(S), an infinite
suspension functor Σ∞fr : Hfr(S) → SHfr(S), and an equivalence of infinity cate-
gories γ∗ : SHfr(S)→ SH(S), where SH(S) is the infinity category version of the
triangulated category SH(S), that is, the homotopy category of SH(S) is SH(S).
The equivalence γ∗ can be thought of as a version of the construction of infinite
loop spaces from Segal’s Γ-spaces, with a framed correspondence X ← Z → Y of
degree n over X being viewed as a generalization of the map [n]+ → [0]+ in Γop.

With this background, we can give a rough idea of Hoyois’ construction of the
spectrum representing motivic cohomology over S. He considers spans X p←− Z

q−→
Y , X,Y ∈ SmS , with p : Z → X a finite morphism such that p∗OZ is a locally free
OX -module; note that this condition is satisfied if p is a syntomic morphism, but not
conversely. These spans form a category Corrflf (SmS) under span composition
(“flf” stands for “finite, locally free”) and forgetting the paths γ defines a morphism
of (infinity) categories πad : Corrfr(SmS)→ Corrflf (SmS).

Given a commutative monoid A, the constant Nisnevich sheaf on SmS with value
A extends to a functor

AS : (Corrflf )op → Ab,

where pullback from Y to X by X
p←− Z

q−→ Y is given by multiplication by
rankOX

OZ , if X and Y are connected; one extends to general smooth X and Y by
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additivity. This gives us the presheaf (of abelian monoids) with framed transfers
AfrS := AS ◦ πop

ad, and the machinery of Elmanto, et al., converts this into the mo-
tivic spectrum γ∗Σ

∞
frA

fr
S ∈ SH(S). Hoyois shows that this construction produces a

cartesian family, and that taking A = Z recovers Spitzweck’s family S 7→MZS .
This gives us a conceptually simple construction of a motivic Eilenberg-MacLane

spectrum, and the corresponding motivic category DMH(S), much in the spirit
of Voevodsky original construction of DM(k) and the Röndigs-Østvær theorem
identifying DM(k) with the homotopy category of EM(Z(0))-modules.


