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§I. Mechanical Linkages

The moduli space of a mathematical structure parameterizes all

deformations which respect the defining properties of the

structure.

As a first example, consider a mechanical linkage:



An abstract linkage Γ is a connected graph

Γ = (V,E, `)

where V and E are the vertex and edge sets and

` : E→ R>0

is an edge length function.

A planar linkage φ of type Γ is a function

φ : V→ R2

which, for every edge e = (v , v ′) ∈ E, satisfies the condition

`(e) = |φ(v)− φ(v ′)| .



For a fixed abstract linkage Γ, there could be many

planar linkages:

What is the space of all planar linkages of type Γ?



Let Mod(Γ) be the moduli space of planar linkages of type Γ,

Mod(Γ) ⊂ (R2)|V| ,

defined by real algebraic equations corresponding to the edges.

Given a planar linkage, we can apply translations and rotations.

Let

mod(Γ) =
Mod(Γ)

R2 o SO(2)

denote the quotient by these simple motions.

A first example: mod
( )

= S1 × S1.



A basic exercise is to compute mod(Γ) for the square:

Γ =

The answer is:

mod(Γ) =



What are the three singular points?

After labelling the edges:

the singular points can be drawn as:



Theorem (Kapovich-Millson 1999): For every compact smooth

manifold M, there exists an abstract linkage Γ with

mod(Γ)
diffeo

= M t · · · tM ,

a finite disjoint union.

The result was first imagined by Thurston in the 1980s. The first

step of the proof uses the Nash-Tognoli Theorem to realize M as a

real algebraic set in Rn. Once the latter is found, the proof of

Kapovich-Millson is constructive.



Can we find an abstract linkage Γ with mod(Γ) = S2 ?

An answer for Γ is:

The example is taken from the work of Dirk Schütz.



§II. Instantons

Let M be a compact, oriented, simply connected,

smooth 4-manifold. The only interesting cohomology

of M is H2(M,Z) which carries a unimodular

symmetric bilinear intersection form:

H2(M,Z)× H2(M,Z)
∪−→ H4(M,Z)

∼
= Z .

Theorem (Freedman 1982): M is classified up to

homeomorphism by the intersection form on H2(M,Z).

The algebraic invariants include the rank Zr ∼= H2(M,Z) and

the signature σ of the intersection form. The form is

definite if σ = ±r.



The intersection form

H2(M,Z)× H2(M,Z)
∪−→ H4(M,Z)

∼
= Z

can either be defined via cup product or geometrically via

intersection counts of Poincaré dual cycles:



For compact, oriented, simply connected, topological

4-manifolds, all unimodular symmetric bilinear forms can arise as

intersection forms. Is this also true for smooth 4-manifolds?

Theorem (Donaldson 1983): In the smooth case, if the

intersection form of M is definite, then the intersection

form is diagonalizable over Z.

There are many non-diagonalizable definite forms, but

Donaldson rules them all out for smooth 4-manifolds.

The remarkable proof uses in a novel way the geometry of

the moduli space of SU(2) instantons on M.



What possible path could an argument take?

Suppose there exists an oriented 5-manifold which bounds

M together with a disjoint union of projective planes

CP2 t · · · t CP2.

The supposed

picture looks like:



Then, we could use properties of the oriented cobordism

between M and the disjoint union

CP2 t · · · t CP2 .

A fundamental property is signature invariance,

σ(M) = σ(CP2 t · · · t CP2) .

So such a cobordism yields information about the intersection

form of M.

Hirzebruch’s famous Signature Theorem expresses

the signature of a 4n-dimensional manifold in

terms of explicit oriented cobordism invariants,

the Pontryagin classes.



Donaldson’s proof in the postive definite case:

Equip M with a Riemannian metric g and a principal

SU(2)-bundle P→M with

c2(P) · [M] = −1 .

Consider a moduli space Mod of connections A on P:

• The curvature F(A) ∈ Ω2(Ad) is a 2-form on M with values in

the vector bundle on M associated to P via the adjoint

representation of SU(2).

• The metric g together with an invariant metric on Ad yields a

metric on Ω2(Ad).

• The Yang-Mills functional is defined by∫
M
|F(A)|2 dvolg .



• An instanton A is a critical point for the Yang-Mills functional.

• We are interested in instantons A which are also self dual:

F(A) = ?F(A) .

Mod is the moduli space of self dual instantons taken up to

gauge transformation.

Mod is 5-dimensional, but is singular and not compact.

By deep results of Taubes, Uhlenbeck, and Donaldson, there is

an associated compact oriented moduli space M̃od of the

following form:



Mod =

M̃od =



• The locus M ⊂ M̃od can be viewed in the following manner:

The point x ∈M ⊂ M̃od is the limit of self-dual connections A

where the amplitude |F(A)|2 of the curvature becomes a

δ-function on M at the point x .



• The number of singularities of Mod is the number n of pairs

±γ ∈ H2(M,Z) satisfying

∫
M
γ ∪ γ = 1 .

By simple algebra, n ≤ σ(M) for positive definite forms

with equality only in the diagonalizable case.

• M is cobordant to a disjoint union of n projective planes

CP2 t · · · t CP2.

The disjoint union has signature = n.

• Since the signature is an invariant of oriented cobordism,

n = σ(M). �



§III. Riemann surfaces

A Riemann surface C is a compact connected 1-dimensional
complex manifold.

The genus g is the number of holes as a topological surface.

• genus 0: there is a unique complex structure
(up to biholomorphism),
the Riemann sphere.

• genus > 0: the complex structure can be varied
while keeping the topology fixed.



C may also be viewed as an algebraic curve defined by the

zero locus in C2 of a single polynomial equation

F (x , y) = 0

in the complex variables x , y (up to a few points at infinity).

For example, the cubic equation

F (x , y) = y2 − x(x − 1)(x − 2)

defines a Riemann surface of genus 1

with points in R2 given by:



The complex structure can be varied by
changing the coefficients of the defining
polynomial:

Fλ(x , y) = y2 − x(x − 1)(x − λ)

provides a 1-parameter family of Riemann
surfaces of genus 1.

We will also be interested in Riemann surfaces with

marked points (C,p1, . . . ,pn):



Let Mg be the moduli space of Riemann surfaces of genus g :

Riemann knew Mg was (essentially) a non-compact

complex manifold of dimension 3g − 3.



Riemann constructs the variations of complex structure, states the
dimension, and coins the term moduli in a single sentence in
Crelle’s Journal in 1857.

The remaining 3p − 3 branch values of those

systems of µ-valued equally branched functions can therefore take arbitrary values;

and thus a class of systems of (2p + 1)-connected functions and a corresponding class

of algebraic equations depend upon 3p − 3 continuously varying quantities, which

should be called the moduli of these classes.



Consider degree µ coverings of
the Riemann sphere with
2p + 2µ− 2 simple branch points:

By the Riemann-Hurwitz formula, the genus of the cover is p.
The variation of complex structures of the cover is constructed by
fixing −p + 2µ+ 1 branch points in the Riemann sphere and
letting the remaining 3p − 3 branch points vary freely.

Hurwitz later studied these
covers systematically around
1900 at ETH Zürich.



Deligne and Mumford in 1969 compactified the moduli space of

Riemann surfaces with marked points by the moduli space

Mg ,n of stable pointed curves:

Again, Mg ,n is (essentially) a complex manifold of dimension

3g − 3 + n, but is compact.



Mg ,n has been studied from several perspectives (algebraic,

hyperbolic, symplectic, topological) for more than 50 years.

To each marked point pi, there is an associated cotangent line

Li →Mg ,n

defined by:



Since Li →Mg ,n is a complex line bundle, we can define

ψi = c1(Li ) ∈ H2(Mg ,n,Q) .

The Chern class is Poincaré dual to the cycle defined by the zeros

and poles of a meromorphic section of Li .

A fundamental question concerns the integration of these

cotangent line classes:∫
Mg,n

ψk1
1 ψ

k2
2 · · ·ψ

kn
n = ?

For the dimensions to match: 3g − 3 + n =
∑n

i=1 ki .

A beautiful answer is provided by Witten’s conjecture in 1990.



We place the integrals in a generating series.

• Let
〈
τk1τk2 · · · τkn

〉
g

=
∫
Mg,n

ψk1
1 ψ

k2
2 · · ·ψkn

n .

• Introduce formal variables t0, t1, t2, . . . .

• Define the generating series of cotangent line integrals

over moduli spaces of curves of genus g ,

Fg (t0, t1, t2, . . .) =
∑
{mi}

∞∏
i=0

tmi
i

mi !

〈
τm0
0 τm1

1 τm2
2 · · ·

〉
g
.

• Put them all together:

F(λ, t0, t1, t2, . . .) =
∞∑

g=0

λ2g−2 Fg .



Witten’s Conjecture (1990) / Kontsevich’s Theorem (1992):

Let U(λ, t0, t1, t2, . . .) =
∂2F

∂t20
.

The series U satisfies the Korteweg-DeVries equation,

λ−2
∂U

∂t1
= U

∂U

∂t0
+

1

12

∂3U

∂t30
.

The KdV equation was written in the 19th century to study

shallow water waves. The connection to integration over Mg ,n

was proposed by Witten via a matrix model approach to

quantum gravity.

Furthermore, U satifies the KdV hierarchy which (together with

the string equation) uniquely determines F.



§ Moduli in Mathematics

I. Moduli study transforms the particular to the universal in
mathematics (a planar linkage is a particular object in Euclidean
geometry, the moduli spaces include the study of all smooth
manifolds).

II. The study of the moduli space of objects on M can reveal
hidden structure of M (Donaldson’s Theorem).

III. Moduli spaces themselves can have an very rich intrinsic
geometry (Witten’s Conjecture / Kontsevich’s Theorem).

The goal of the last example will be to show:

IV. The surprising connections between seemingly unrelated
moduli spaces.



§IV. Sheaves

Let S be a nonsingular projective algebraic surface.

As a topological space, S is a 4-manifold.

An algebraic analogue of the instanton moduli space is the

moduli space US(c1, c2) of rank 2 stable sheaves on S.

The moduli space US(c1, c2) parameterizes stable sheaves

E → S

of rank 2 with fixed Chern classes

c1(E) = c1 , c2(E) = c2 .

Stablity is with respect to a fixed ample line bundle on S.



We have universal structures which

we use to define cohomology classes

τk (γ) = πU∗(π
∗
S(γ) ∪ chk (E))

for integers k ≥ 0 and γ ∈ H∗(S,Q).

We can then ask the question∫
US(c1,c2)

τk1(γ1)τk2(γ2) · · · τkn (γn) = ?

Is there any relationship to the integrals in Witten’s Conjecture?





For S = CP2 and H ∈ H2(CP2) the hyperplane class, define the

following generating series of integrals over US(c1, c2):

F =
∞∑
`=0

∑
j1,...,j`
k1,...,k`

∏̀
i=1

ki ! t
ji
ki

∫
US(c1,c2)

∏̀
i=1

τki+2−ji (Hji ) .

Theorem (Bojko-Lim-Moreira 2022): For all n ≥ −1,

Ln F = 0

for the differential operators

Ln =
2∑

j=0

∞∑
k=0

(
kt j

k

∂

∂t j
k+n

− k

2

∂

∂t2n+1

t j
k

∂

∂t j
k−1

)

+
∑

a+b=n

(
∂

∂t0a

∂

∂t2b
− ∂

∂t1a

∂

∂t1b
+

∂

∂t2a

∂

∂t0b
+

∂

∂t2a

∂

∂t2b

)
.



The End
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