Exercises for the workshop on dualisable
categories and continuous K-theory

Kair HiLmAN® DoOMINIK KIRSTEINT

September 12, 2024

These are exercises collected from the workshop on Dualisable Categories and Continuous
K-theory held at the MPIM Bonn on 9-14 September, 2024. The following are some of the
available resources on this new subject:

(1) Efimov — K-theory and localizing invariants of large categories

(2) Krause-Nikolaus—Putzstiick — Lecture notes on sheaves on manifolds

(3) Ramzi — The formal theory of dualizable presentable co—categories

(4) Lehner - Exercises for Continuous K-theory

Furthermore, some resources on the basics of algebraic K-theory include the following:
(5) Hebestreit-Wagner — Lecture notes on algebraic and hermitian K-theory

(6) Winges — Lecture notes on localisation and devissage in algebraic K-theory

(7) Hilman-McCandless — Lecture notes for an introduction on algebraic K-theory

Comments, corrections, and suggestions are of course very welcome!

Contents

1 Exercises from day 1 2
2 Exercises from day 2 4
3 Exercises from day 3 5

“kaif@mpim-bonn.mpg.de
Tkirstein@mpim-bonn.mpg.de


https://arxiv.org/abs/2405.12169
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/teaching.html
https://sites.google.com/view/maxime-ramzi-en/publicationspreprints?authuser=0
https://sites.google.com/view/georglehner/home?authuser=0
https://sites.google.com/view/fabian-hebestreit/home/lecture-notes
https://homepages.uni-regensburg.de/~wic42659/
https://sites.google.com/view/jonasmccandless/introduction-to-algebraic-k-theory?authuser=0

1 Exercises from day 1

Exercise 1.1. Let D <> C & C/D be a Karoubi sequence.

(1) Show that ¢ admits a right adjoint if and only if p does.

‘R R
(2) In either case, show that D <— C Lo /D is another Karoubi sequence.
(3) In the situation of (1), show that i(D) and p*(C/D) generate C as a stable category.

Exercise 1.2. Show that a natural transformation (—)~ — Q° K(—) (which is a map in
Fun(CatP®!, S)) uniquely enhances to a natural transformation of E,~monoids. Hint: use
the universal property of CMon as a right adjoint.

Exercise 1.3. Use the procedure described during Lecture 2 to show that there is an equiv-
alence colimy F ~ limy F € Pr’ for any functor F': X — Pr” where X is an anima/oo-
groupoid/space.

Exercise 1.4. Explicitly work out the duality data needed to witness that Ind(Cp) is du-
alisable for any Cy € CatP*'f. Similarly, work out the duality data witnessing that D(A)
is dualisable with dual D(A°P) for any ring A. Hint: use the mapping spectrum functor
home, : Cg¥ x Co — Sp for the first part.

Exercise 1.5. Let Cy € CatP®! and write C := Ind(Cp). Construct the left adjoint Y:C —
Ind(C) to the colimit functor colim: Ind(C) — C. Hint: the functorY is given explicitly by
Ind(Yy) where Yy: Co — Ind(Cy) = C is the Yoneda embedding.

Exercise 1.6. Let (C,®,1) be a closed symmetric monoidal category. Show that retracts of
dualisable objects are dualisable.

Exercise 1.7. Let F': C — D be a colimit preserving functor between presentable categories.
Show the following:

(1) If F admits a filtered colimit preserving right adjoint, then F' preserves compact ob-
jects.

(2) If C is compactly generated and F’ preserves compact objects, then the right adjoint of
F preserves filtered colimits.

(3) If F is fully faithful and its right adjoint preserves filtered colimits, then F' reflects
compact objects (i.e. if F'(x) € D is compact, then x € C is compact).

Exercise 1.8. Let I be a set and J; be a filtered category for every i € I, and let f;: J; — C

be functors. Construct the natural transformation colimpy. , [I; — II; colimy, of functors

Exercise 1.9. Let C be a dualisable category



(1) Show that for z € C the functor (CV)°? — Sp,y — homegev(z K y,coevl) is
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corepresented by an object ¥ € CV, ie. it is equivalent to homev(—,z"), where

coev: Sp — C ® CV denotes the coevaluation. This thus gives rise to a functor
(—)V:C®P — CV.

(2) Consider a ring R and M € Modg. Show that M = hompg(M, R).

(3) Show that, under the equivalence C¥ ~ Fun®(C, Sp), the object 2" corresponds to the
functor homy,q(cy (Y (), Y(-)).

Exercise 1.10. Let C be a dualisable category and A C C“ an idempotent complete stable
subcategory.

(1) Show that the canonical map C¥/A — (C/Ind(.A))“ is an equivalence. Hint: reduce
to the case where C is compactly generated.

(2) Deduce in particular that (C/Ind(C%))“ ~ 0.

Exercise 1.11 (Thomason’s theorem). Let C be a stable category. Call a full stable subcat-
egory D C C dense if D generates C under retracts. Thomason’s theorem states that for
a dense stable subcategory the map Ko(D) — K((C) is injective. Furthermore, the maps
(D CC)w (Ko(D) C Ko(C)) and H C Ko(C) = CH = {z € C : [x] € H} determine
inverse equivalences between the collection of dense stable subcategories of C and subgroups
of Ky(C). Prove Thomason’s theorem in the following steps:

(1) Show that C* is a dense stable subcategory.
(2) Show that How = H where Hp = Im(Ky(D) — Ko(C)).

(3) Show that C'» = D. Hint: Use Heller’s criterion from Exercise 3.11. Alternatively,
define an equivalence relation ~ on mo(C~) via x ~ ' iff there are d,d’ € D with
r@®d~ 2" ®d. Show that the map Ko(C) — mo(CT)/ ~, [x] — [z] is a well defined
group homomorphism with kernel Hp.

(4) Show that K((D) — Ko(C) is injective, i.e. Ko(D) = Hp. Hint: Apply the previous
results for the category D and subgroup N = ker(Ko(D) — Ko(C)) C Ko(D).

Exercise 1.12. Let C € CatP® and D C C be a full stable idempotent complete subcategory.
Show thatfor z € C/D thereisy € C which gets send to x®x[1] € C/D under the projection.
In fact, show that for all z € C/D such that [z] = 0 € K((C/D), there exists a lift of z to an
object zZ € C. Hint: use Thomason’s theorem from Exercise 1.11.

Exercise 1.13. Let I be a possibly infinite set and .4; be a collection of small stable categories
forall i € I. Let B; C A; be stable subcategories. Then show that the canonical map
I1;Ai/I1; Bi = I1;(Ai/B;) is an equivalence.



Exercise 1.14. Let p; be the i—th prime number so that for example p; = 2, po = 3, etc. Write
A, = Z[p,?l, k > n], so that for instance A; = Q and we have maps A; + Ay < Az« ---.
By restriction of scalars, we thus obtain a functor

colimD(A,) — D(2).

n

Show that this functor is not fully faithful.

2 Exercises from day 2

Exercise 2.1. Let C be a stable presentable category. Show the following facts:

(1) Amap f: z — y inC is compact if and only for any filtered system (z;); in C together
with a map y — colim; z;, the composite x — y — colim, z; factors through some z;.

(2) idg is compact in C if and only if = is compact.
(3) Compact maps in C form a two sided ideal.

(4) Suppose that C is compactly generated. Then a map in C is compact if and only if it
factors through a compact object.

Exercise 2.2. Let F': C — D be a colimit preserving functor between presentable stable
categories.

(1) Suppose that C is dualisable. Show that F' preserves compact morphisms if and only if
F is strongly continuous.

(2) Suppose that C and D are dualisable. Show that F' is strongly continuous if and only
if the canonical transformation Yp o F' — Ind(F’) o Y is an equivalence.

Exercise 2.3 (Homological epimorphisms). Consider a map A — B in Alg(Sp). Show that
the map B ®4 B — B is an equivalence if and only if the restriction functor Res: Modp —
Mod 4 is fully faithful.

Exercise 2.4. Suppose we have an inverse system of spectra Xy <— X7 <— X3 < --- such
that 7, X; < 7, X;4+1 are the zero maps for all ¢. Show that lim; X; ~ 0 € Sp. Recall that
this was used in Akhil’s Lecture 2 in the proof of criterion (4) for dualisability in terms of
compactly exhaustible maps. Hint: use the Mittag—Leffler condition for vanishing of lim .

Exercise 2.5. Let C,D € Pr% and recall the notations Fun®*(D, £) and Corr(D, &) from
Sasha’s Lecture 2.

(1) Work out the details of the equivalence Fun®*(D, £) ~ Corr(D, £) as sketched in the
lecture.

(2) Work out the details that the composition structures on Fun®* and Corr are compat-
ible. That is, show that there is a naturally commuting square



Fun®<(C, D) x Fun®*(D, £) —°— Fun®*(C, £)

: |

Corr(C, D) x Corr(D, &) —>— Corr(C, &)
forC,D,& € Prk.

Exercise 2.6. Let A, B be small stable categories. Recall that, for a category C, we define
Pro(C) := Ind(C°P)°P. Show that there is an equivalence

FunaCC’CX(IHdA, IDdB) ~ FunCX(Ba Pro(Ind(A)))Op.

3 Exercises from day 3

Exercise 3.1. Suppose that A — B — C is a Karoubi sequence in CatP. Show that
Ind(A) — Ind(B) — Ind(C) is a short exact sequence in Catd"?!,

Exercise 3.2. Let C be a dualisable category. For a,b € C**, show that

homgyeont (a, b) = home (a, b)/hompyaie) (Y (a), Y (b))

by using that colim: Ind(C) — C is right adjoint to Y.

Exercise 3.3. Let F': C — D be a strongly continuous functor between stable presentable
categories. Show that if C is dualisable, then the localising subcategory of A C D generated
by the image of F is dualisable and the inclusion A C D is strongly continuous.

Exercise 3.4. Consider a commutative square

Co — (1
m s @)
DO —_— Dl

in Prl. Show the following:

(1) If (1) is a pullback square and Fj is a localisation, then Fj is a localisation and (UJ) is
also a pushout square.

(2) If (V) is a pushout square and Fy is fully faithful, then F is fully faithful.

Exercise 3.5. Show that the forgetful functor Cat&"! — Prk preserves the following types

of limits:
(1) finite products;
(2) fibers of strongly continuous localisations;

(3) pullbacks where one leg is a strongly continuous localisation.



Exercise 3.6. Let (C;); be a family of stable presentable categories. Show that if each C; is
compactly generated, then [[, C; is compactly generated and ([ [, C;)¥ ~ @, CY, where the
coproduct is formed in CatP®,

Exercise 3.7 (Generalisation of Tamme’s excision theorem). Consider a pullback of the form
(0) in Catd"®! and assume that Fj is a localisation. Show that for any localising invariant
E: Cattgt‘“"1 — &, the square

E(Cy) —— E(Cy)

J J

E(Dy) —— E(Dy)
is a pullback square.

Exercise 3.8. Work out the details that we have a Bousfield localisation
@
Fun(Q2”,Sp) ——= [IoSp
< R

given by ¢(F), = cofib(colimps, F(b) — F(a)) and ¢*((X4)aeq)(b) = Xp. This was used
in Sasha’s Lecture 2 to obtain a short exact sequence in Catd"® with kernel Shv>q(R, Sp).

Exercise 3.9 (Waldhausen’s addtivity trick). Let F': CatP! — £ be a localising invariant.
Show that for any fiber sequence f — g — h in Fun®*(.A, B) there is an equivalence F'(g) ~
F(f)® F(h) inhomg(F(A), F(B)). Hint: Use the split Karoubi sequence C — cA' S Cto
first construct a splitting F(CA") ~ F(C) & F(C).

Exercise 3.10 (Universal K-equivalences). An exact functor f: A — B between small stable
categories is called a universal K -equivalence if there is an exact functor g: B — A such that
[gf] = [ida] in Ko(Fun® (A, A)) and [fg] = [idg] in Ko(Fun®™(B, B)).

Show that f is a univeral K-equivalence if and only if for every additive invariant
F: Cat®® — &, the map F(f): F(A) — F(B) is an equivalence. (If you don’t know what
additive invariants are, just prove the = direction for any localising invariant)

Exercise 3.11 (Heller’s criterion). Let C be a small stable category. Show that for z,y € C
the following are equivalent:

(1) [z] = [y] in Ko(C).
(2) There exist u, v, z € C such and fiber sequences u =+ @ z > vandu -y | z — v.

Hint: Define an equivalence relation ~ on7y(C~) by (2) and construct an equivalence Ky(C) ~
m(C™)/ ~.

As an application, show that for a family (C;);cs of small stable categories, the natural map
Ko(I];Ci) = 11; Ko(C;) is an equivalence.
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