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Introduction



What to expect?
Main issue: the classification of gapped ground states:
• Wewill always work in the thermodynamic limit

• Gapped ground states of local Hamiltonians...

• ... with some equivalence relation

• Focus on states with topological order (or long-range
entanglement)

• Non-invertible states

Question
Can we find (physically interesting) invariants?



Why are these states interesting?
• Can host anyons: quasi-particles/superselection
sectors/charges/... with braided statistics

• Algebraic properties of anyons are described by braided
tensor C∗-categories (typically even modular or braided
fusion)

• ‘Topological’ nature makes these properties robust

• In other words, the category should be an invariant

Question
How can we obtain the category of anyons from amicroscopic
description of the state? (And is this indeed an invariant?)



What not to expect?
• Not a historical overview

• Only non-chiral topological order

• Will focus on basics, not most general statements

• Only discuss the operator-algebraic “DHR approach” to
superselection sectors

• Will gloss over more technical details



Plan for the week
• Lecture 1: The toric code and its ground states

• Lecture 2&3: The category of superselection sectors

• Lecture 4: Classification of phases and long-range
entanglement

We illustrate the theory by the example of the toric code, but
methods work muchmore general!



Some history
Approach is rooted in Doplicher-Haag-Roberts theory:1

• Originates in algebraic quantum field theory, defined in
terms of Haag-Kastler nets of observables O 7→ A(O)

• DHR theory attempts to capture ‘charges’ and leads to
Bose/Fermi (para-)statistics in (3+1)D

• Culminates in Doplicher-Roberts theorem: a STC∗-category
is equivalent to RepG for some compact groupG

• In lower dimensions, can get braided statistics (anyons!)

• Similar techniques have been very successful in CFT
(conformal nets)

1Haag, Local Quantum Physics, Springer (1992)



Different approaches
Themain feature of the approach is the appearance of a braiding
(describing anyon exchange).

Question
How does this braiding appear?

• ‘Classical DHR approach’: these lectures
(See also Ogata, arXiv:2106.15741)

• Prefactorisation algebras (geometric approach)
(Benini, Carmona, PN, Schenkel, arXiv:2505.07960)
→ talk Alexander Schenkel next week

• Axiomatic approach: nets on certain posets
(Bhardwaj, Brisky, Chuah, Kawagoe, Keslin, Penneys, Wallick:
arXiv:2410.21454)



The toric code



The toric code

Hx = C2



The toric code

Ax = M2(C)



Pauli matrices
Recall the definition of the Pauli matrices:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
They have nice algebraic properties: {σi, σj} = 2δi,jI :

• Square to the identity

• Different Pauli matrices anti-commute

• Together with I form a basis ofM2(C).



Stars and plaquettes

p

s



Dynamics
We define star and plaquette operators:

As =
⊗
j∈s

σx
j , Bp =

⊗
j∈p

σz
j .

Some easy properties: A2
s = B2

p = I , and all commute.
Can use this to define the dynamics:

HΛ =
∑
s⊂Λ

(I −As) +
∑
p⊂Λ

(I −Bp)

Note that the dynamics are very simple (“commuting projector”)!



Frustration-free ground state

Lemma
LetXi ≤ I be a set of operators and suppose that there is a
unique state ω such that ω(Xi) = 1 for allXi. Then ω is pure.

Proof.
Let ϕ be a positive linear functional such that ϕ ≤ ω. Since
I −Xi ≥ 0, we have

0 ≤ ϕ(I −Xi) ≤ ω(I −Xi) = 0.

Hence ϕ(Xi) = ϕ(I). From the uniqueness assumption,
ϕ = ϕ(I)ω, and it follows that ω is pure.

Lemma
LetX ≤ I with ω(X) = 1. Then ω(A) = ω(AX) = ω(XA).



Frustration-free ground state

Theorem
The toric code has a unique frustration free ground state ω0. This
state is pure.

Proof.
One can show (exercise!) that there is a state such that
ω0(As) = ω0(Bp) = 1 for all star and plaquette operators, and
these conditions uniquely determine it. Hence ω0 is pure. Note
that ω0(I −As) = ω0(I −Bp) = 0. ForA ∈ Aloc, we have

−iω0(A
∗δ(A)) =

∑
s

ω0(A
∗AAs)− ω0(A

∗AsA) +Bp terms

=
∑
s

ω0(A
∗(I −As)A) +Bp terms

≥ 0



An aside...
When defined on a non-trivial topology (e.g. a torus), the
condition ω(As) = ω(Bp) = 1 fixes the state locally but not
globally. In fact, the ground state space is a quantum error
correction code!

Ground space degeneracy is given by 4g



GNS representation
Wewill use ω0 throughout as a reference state.
• GNS representation (π0,Ω,H0)

- π0 : A → B(H0) ∗-representation

- π0(A)Ω dense inH0

- ω0(A) = 〈Ω, π0(A)Ω〉H0

• Will often identify π0(A)withA

• We haveAsΩ = BpΩ = Ω (stabiliser condition):
⇝ HΛΩ = 0 for all Λ

• Hamiltonian in GNS representation withHΩ = 0,H ≥ 0
satisfies spec(H) ∩ (0, 2) = ∅ (spectral gap)

• State satisfies LTQO conditions: spectral gap is stable!



Excitations



Path operators
We can consider paths ξ and dual paths ξ̂:

ξ

ξ̂



Path operators
And corresponding operators Fξ and F

ξ̂
:

σz

σz

σz

σz σz

Fξ

F
ξ̂

σx σx

σx

σx σx σx



Path operators
The edges on which the path operators act always have an even
number in common with star and plaquette operators and hence

[Fξ, As] = [Fξ, Bp] = [F
ξ̂
, As] = [F

ξ̂
, Bp] = 0

except at the endpoints of the path! Path operators Fξ

anti-commute with star operators at endpoint, whilst the F
ξ̂

anti-commute with the plaquette operators.

Excitations
The path operators create a pair of electric or magnetic
excitations respectively.

We have

HΛFξΩ = 2#(∂ξ ∩ Λ)FξΩ, HΛFξ̂
Ω = 2#(∂ξ̂ ∩ Λ)F

ξ̂
Ω

where #(∂ξ ∩ Λ) is the number of endpoints of ξ within Λ



Path operators

ξ

ξ̂



Single excitations
The state FξΩ describes a pair of anyons/excitations.
Alternatively, in the Heisenberg picture,

ρZξ (a) := FξaF
∗
ξ = (AdFξ)(a)

is an automorphism ofA that describes how observables change
in the presence of the two excitations.

Question
Can we describe a single excitation?

Answer
Yes! We work on an infinite lattice, so can send one of the
excitations to infinity:

ρZξ (a) := lim
n→∞

FξnaF
∗
ξn

where ξn are the first n parts of a semi-infinite ribbon ξ.



Cones



Localised automorphisms
• Can choose a cone Λ as in the picture...

• ... and a semi-infinite path ξ ⊂ Λ.

• We get a corresponding automorphism ρZξ .

• This is localised in Λ: ρZξ (a) = a for all a ∈ A(Λc).

Notation
We can do something similar for dual paths to get ρXξ or for the
combination of a path and dual path, to get ρYξ . We will use the
notation ξ for all types of paths, with notation ρkξ for k = X,Y, Z .
By definition, ρ0ξ = id.



Single anyon states
The states ω0 ◦ ρkξ describe single anyon states (trivial, electric,
magnetic, and “combined” state)!
These have a topological property, in the sense that the
“direction” of the string is invisible:

ξ ⇝ ξ Bp ⇝ ξ′

So we have
ω0(FξaF

∗
ξ ) = ω0(BpFξaF

∗
ξ Bp) = ω0(Fξ′aF

∗
ξ′)

Wemay write ω0 ◦ ρkx where x is the endpoint of the path. Note
that the automorphism ρk do depend on ξ!



Equivalence of states on A

Definition
Let ω1, ω2 be two pure states. Then we say they are equivalent if
the corresponding GNS representations are unitarily equivalent.

Lemma
Two pure states ω1 and ω2 on the quasi-local algebra A are
equivalent if and only if for every ϵ > 0, there is some finite set Λ
such that for every local observableA localised outside Λwe
have

|ω1(A)− ω2(A)| ≤ ϵ‖A‖.

Pure states are inequivalent if they can be distinguished ‘at
infinity’!



Inequivalence of states

Lemma
The states ω0 ◦ ρkx and ω0 ◦ ρk

′
y are inequivalent if k 6= k′.

Proof.
We canmove the excitations over a finite distance using local
unitaries, so wlog wemay assume x = y. Consider a closed loop
ξ. Then one sees that

Fξ =
∏

p⊂int(ξ)

Bp,

and something similar for closed dual loops.
Since the ribbon operators commute with anyAs andBp (apart
from possibly at the end-point, where they may anti-commute), it
follows that ρkx(Fξ) = ±Fξ , and ω0 ◦ ρkx(Fξ) = ±1.



Inequivalence of states

Lemma
The states ω0 ◦ ρkx and ω0 ◦ ρk

′
y are inequivalent if k 6= k′.

Proof.
(... cont.) The result is−1 only if ξ circles around x, and k 6= 0 and ξ
is of a different type! Since for any finite set Λ, we can choose a
loop surrounding Λ and the endpoint of the semi-infinite ribbon,
we can always find an operatorX ∈ A(Λc)with ‖X‖ = 1 such that

|ω0 ◦ ρkx(X)− ω0 ◦ ρk
′

x (X)| = 2.

Since both states are pure, the result follows.
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