

Introduction to superselection sector theory I

Pieter Naaijkens

Cardiff University

QFT and Topological Phases via Homotopy Theory and Operator Algebras 30 June – 3 July, 2025

1. Introduction

2. The toric code

3. Excitations

Introduction

What to expect?

Main issue: the classification of gapped ground states:

- We will always work in the thermodynamic limit
- Gapped ground states of local Hamiltonians...
- ... with some equivalence relation
- Focus on states with topological order (or long-range entanglement)
- Non-invertible states

Question

Can we find (physically interesting) invariants?

Why are these states interesting?

- Can host anyons: quasi-particles/superselection sectors/charges/... with braided statistics
- Algebraic properties of anyons are described by braided tensor C*-categories (typically even modular or braided fusion)
- 'Topological' nature makes these properties robust
- In other words, the category should be an invariant

Question

How can we obtain the category of anyons from a microscopic description of the state? (And is this indeed an invariant?)

What not to expect?

- Not a historical overview
- Only non-chiral topological order
- Will focus on basics, not most general statements
- Only discuss the operator-algebraic "DHR approach" to superselection sectors
- Will gloss over more technical details

Plan for the week

- Lecture 1: The toric code and its ground states
- Lecture 2&3: The category of superselection sectors
- Lecture 4: Classification of phases and long-range entanglement

We illustrate the theory by the example of the toric code, but methods work much more general!

Some history

Approach is rooted in Doplicher-Haag-Roberts theory:¹

- Originates in algebraic quantum field theory, defined in terms of Haag-Kastler nets of observables 𝒪 → 𝕄(𝒪)
- DHR theory attempts to capture 'charges' and leads to Bose/Fermi (para-)statistics in (3+1)D
- Culminates in Doplicher-Roberts theorem: a STC*-category is equivalent to Rep *G* for some compact group *G*
- In lower dimensions, can get braided statistics (anyons!)
- Similar techniques have been very successful in CFT (conformal nets)

¹Haag, Local Quantum Physics, Springer (1992)

Different approaches

The main feature of the approach is the appearance of a braiding (describing anyon exchange).

Question

How does this braiding appear?

- 'Classical DHR approach': these lectures (See also Ogata, arXiv:2106.15741)
- Prefactorisation algebras (geometric approach) (Benini, Carmona, PN, Schenkel, arXiv:2505.07960)
 → talk Alexander Schenkel next week
- Axiomatic approach: nets on certain posets (Bhardwaj, Brisky, Chuah, Kawagoe, Keslin, Penneys, Wallick: arXiv:2410.21454)

The toric code

The toric code

The toric code

Pauli matrices

Recall the definition of the Pauli matrices:

$$\sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma^y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

They have nice algebraic properties: $\{\sigma^i, \sigma^j\} = 2\delta_{i,j}I$:

- Square to the identity
- Different Pauli matrices anti-commute
- Together with *I* form a basis of $M_2(\mathbb{C})$.

Stars and plaquettes

Dynamics

We define star and plaquette operators:

$$A_s = \bigotimes_{j \in s} \sigma_j^x, \qquad B_p = \bigotimes_{j \in p} \sigma_j^z.$$

Some easy properties: $A_s^2 = B_p^2 = I$, and all commute. Can use this to define the dynamics:

$$H_{\Lambda} = \sum_{s \subset \Lambda} (I - A_s) + \sum_{p \subset \Lambda} (I - B_p)$$

Note that the dynamics are very simple ("commuting projector")!

Frustration-free ground state

Lemma

Let $X_i \leq I$ be a set of operators and suppose that there is a unique state ω such that $\omega(X_i) = 1$ for all X_i . Then ω is pure.

Proof.

Let ϕ be a positive linear functional such that $\phi \leq \omega$. Since $I - X_i \geq 0$, we have

$$0 \le \phi(I - X_i) \le \omega(I - X_i) = 0.$$

Hence $\phi(X_i) = \phi(I)$. From the uniqueness assumption, $\phi = \phi(I)\omega$, and it follows that ω is pure.

Lemma

Let $X \leq I$ with $\omega(X) = 1$. Then $\omega(A) = \omega(AX) = \omega(XA)$.

Frustration-free ground state

Theorem

The toric code has a unique frustration free ground state ω_0 . This state is pure.

Proof.

One can show (exercise!) that there is a state such that $\omega_0(A_s) = \omega_0(B_p) = 1$ for all star and plaquette operators, and these conditions uniquely determine it. Hence ω_0 is pure. Note that $\omega_0(I - A_s) = \omega_0(I - B_p) = 0$. For $A \in \mathfrak{A}_{loc}$, we have

$$-i\omega_0(A^*\delta(A)) = \sum_s \omega_0(A^*AA_s) - \omega_0(A^*A_sA) + B_p \text{ terms}$$
$$= \sum_s \omega_0(A^*(I - A_s)A) + B_p \text{ terms}$$
$$\ge 0$$

An aside...

When defined on a non-trivial topology (e.g. a torus), the condition $\omega(A_s) = \omega(B_p) = 1$ fixes the state locally but not globally. In fact, the ground state space is a quantum error correction code!

Ground space degeneracy is given by 4^g

GNS representation

We will use ω_0 throughout as a reference state.

- GNS representation $(\pi_0, \Omega, \mathcal{H}_0)$
 - $\pi_0: \mathfrak{A} \to \mathfrak{B}(\mathcal{H}_0)$ *-representation
 - $\pi_0(\mathfrak{A})\Omega$ dense in \mathcal{H}_0
 - $\omega_0(A) = \langle \Omega, \pi_0(A) \Omega \rangle_{\mathcal{H}_0}$
- Will often identify $\pi_0(A)$ with A
- We have $A_s\Omega = B_p\Omega = \Omega$ (stabiliser condition): $\rightsquigarrow H_{\Lambda}\Omega = 0$ for all Λ
- Hamiltonian in GNS representation with $H\Omega = 0, H \ge 0$ satisfies $\operatorname{spec}(H) \cap (0, 2) = \emptyset$ (spectral gap)
- State satisfies LTQO conditions: spectral gap is stable!

Excitations

We can consider paths ξ and dual paths $\hat{\xi}$:

And corresponding operators F_{ξ} and $F_{\hat{\xi}}$:

The edges on which the path operators act always have an even number in common with star and plaquette operators and hence

$$[F_{\xi}, A_s] = [F_{\xi}, B_p] = [F_{\widehat{\xi}}, A_s] = [F_{\widehat{\xi}}, B_p] = 0$$

except at the endpoints of the path! Path operators F_{ξ} anti-commute with star operators at endpoint, whilst the $F_{\hat{\xi}}$ anti-commute with the plaquette operators.

Excitations

The path operators create a pair of electric or magnetic excitations respectively.

We have

 $H_{\Lambda}F_{\xi}\Omega = 2\#(\partial\xi\cap\Lambda)F_{\xi}\Omega, \qquad H_{\Lambda}F_{\widehat{\xi}}\Omega = 2\#(\partial\widehat{\xi}\cap\Lambda)F_{\widehat{\xi}}\Omega$

where $\#(\partial \xi \cap \Lambda)$ is the number of endpoints of ξ within Λ

Single excitations

The state $F_{\xi}\Omega$ describes a pair of anyons/excitations. Alternatively, in the Heisenberg picture,

$$\rho^Z_{\xi}(a) := F_{\xi} a F^*_{\xi} = (\operatorname{Ad} F_{\xi})(a)$$

is an automorphism of ${\mathfrak A}$ that describes how observables change in the presence of the two excitations.

Question

Can we describe a *single* excitation?

Answer

Yes! We work on an infinite lattice, so can send one of the excitations to infinity:

$$\rho_{\xi}^{Z}(a) := \lim_{n \to \infty} F_{\xi_n} a F_{\xi_n}^*$$

where ξ_n are the first *n* parts of a semi-infinite ribbon ξ .

Cones

Localised automorphisms

- Can choose a cone Λ as in the picture...
- ... and a semi-infinite path $\xi \subset \Lambda$.
- We get a corresponding automorphism ρ_{ξ}^Z .
- This is localised in Λ : $\rho_{\xi}^{Z}(a) = a$ for all $a \in \mathfrak{A}(\Lambda^{c})$.

Notation

We can do something similar for dual paths to get ρ_{ξ}^{X} or for the combination of a path and dual path, to get ρ_{ξ}^{Y} . We will use the notation ξ for all types of paths, with notation ρ_{ξ}^{k} for k = X, Y, Z. By definition, $\rho_{\xi}^{0} = \mathbf{id}$.

Single anyon states

The states $\omega_0 \circ \rho_{\xi}^k$ describe single anyon states (trivial, electric, magnetic, and "combined" state)! These have a topological property, in the sense that the "direction" of the string is invisible:

So we have

$$\omega_0(F_\xi aF_\xi^*) = \omega_0(B_pF_\xi aF_\xi^*B_p) = \omega_0(F_{\xi'}aF_{\xi'}^*)$$

We may write $\omega_0 \circ \rho_x^k$ where x is the endpoint of the path. Note that the automorphism ρ^k do depend on ξ !

Equivalence of states on \mathfrak{A}

Definition

Let ω_1, ω_2 be two pure states. Then we say they are equivalent if the corresponding GNS representations are unitarily equivalent.

Lemma

Two pure states ω_1 and ω_2 on the quasi-local algebra \mathfrak{A} are equivalent if and only if for every $\epsilon > 0$, there is some finite set Λ such that for every local observable A localised outside Λ we have

$$|\omega_1(A) - \omega_2(A)| \le \epsilon ||A||.$$

Pure states are inequivalent if they can be distinguished 'at infinity'!

Inequivalence of states

Lemma

The states $\omega_0 \circ \rho_x^k$ and $\omega_0 \circ \rho_y^{k'}$ are inequivalent if $k \neq k'$.

Proof.

We can move the excitations over a finite distance using local unitaries, so wlog we may assume x = y. Consider a closed loop ξ . Then one sees that

$$F_{\xi} = \prod_{p \subset \operatorname{int}(\xi)} B_p,$$

and something similar for closed dual loops.

Since the ribbon operators commute with any A_s and B_p (apart from possibly at the end-point, where they may anti-commute), it follows that $\rho_x^k(F_{\xi}) = \pm F_{\xi}$, and $\omega_0 \circ \rho_x^k(F_{\xi}) = \pm 1$.

Inequivalence of states

Lemma

The states $\omega_0 \circ \rho_x^k$ and $\omega_0 \circ \rho_y^{k'}$ are inequivalent if $k \neq k'$.

Proof.

(... cont.) The result is -1 only if ξ circles around x, and $k \neq 0$ and ξ is of a different type! Since for any finite set Λ , we can choose a loop surrounding Λ and the endpoint of the semi-infinite ribbon, we can always find an operator $X \in \mathfrak{A}(\Lambda^c)$ with ||X|| = 1 such that

$$|\omega_0 \circ \rho_x^k(X) - \omega_0 \circ \rho_x^{k'}(X)| = 2.$$

Since both states are pure, the result follows.

Some references

- [FN15] Leander Fiedler and Pieter Naaijkens, Haag duality for Kitaev's quantum double model for abelian groups, Rev. Math. Phys. 27 (2015), no. 9, 1550021, 43.
- [Hal06] Hans Halvorson, Algebraic quantum field theory, Philosophy of Physics (Jeremy Butterfield and John Earman, eds.), Elsevier, 2006, pp. 731–922.
- [Naa17] Pieter Naaijkens, Quantum spin systems on infinite lattices: a concise introduction, Lecture Notes in Physics, vol. 933, Springer, Cham, 2017.
- [Oga22] Yoshiko Ogata, A derivation of braided C*-tensor categories from gapped ground states satisfying the approximate Haag duality, Journal of Mathematical Physics 63 (2022), no. 1, 011902.