Many interesting arithmetic functions such as class numbers, Fourier coefficients of modular forms, have a rather varying behavior that is only partially understood. However, often it is possible to determine some (possibly weighted) average for them. The approach is often to associate an L-series to the arithmetic quantity of interest and study whether this has an analytic continuation, study the location of its zeros and poles. Armed with this knowledge the Selberg-Delange method, for example, allows one then to determine the average. The most classical L-functions are the Riemann zeta function and Dirichlet L-series, that play a crucial rule in the study of primes, respectively primes in arithmetic progression.
The conference has both more introductory as well as research talks on current topics in this direction. More highlighted themes are Artin's primitive root conjecture (where Dedekind zeta functions come into play) and Euler-Kronecker constants (related to logarithmic derivatives of L-series).
Valentin Blomer [6] (University of Bonn)
Jörg Brüdern [7] (University of Göttingen)
Stephanie Chan [8] (IST Austria)
Ofir Gorodetsky [9](Technion - Israel Institute of Technology)
Neelam Kandhil [10] (University of Hong Kong)
Oleksiy Klurman [11] (University of Bristol)
Peter Koymans [12] (Utrecht University)
Pär Kurlberg [13] (KTH)
Florian Luca [14] (Stellenbosch University)
Carlo Pagano [15] (Concordia University)
Francesco Pappalardi [16] (Roma Tre University)
Vandita Patel [17] (University of Manchester) (online talk)
Lillian Pierce [18] (Duke University)
Sumaia Saad Eddin [19] (Austrian Academy of Sciences)
Damaris Schindler [20] (University of Göttingen)
Alisa Sedunova [21] (Purdue University)
Igor Shparlinski [22] (University of New South Wales)
Efthymios Sofos [23] (University of Glasgow)
Peter Stevenhagen [24](Leiden University)
Ade Irma Suriajaya [25] (Kyushu University)
Lola Thompson [26] (Utrecht University)
Stevan Gajovic [27] (MPIM Bonn)
Oana Padurariu [28] (MPIM Bonn)
The application is closed.
asymptotic25$@$mpim-bonn$.$mpg$.$de [29]
_______________________________________________________________________________
Policy for the Max Planck Society against discrimination, harassment and violence. [31]
Links:
[1] http://www.mpim-bonn.mpg.de/de/taxonomy/term/40
[2] http://www.mpim-bonn.mpg.de/de/node/3444
[3] http://www.mpim-bonn.mpg.de/de/node/13799/program?page=last
[4] http://www.mpim-bonn.mpg.de/de/node/13799/abstracts
[5] https://www.mpim-bonn.mpg.de/webfm_send/911
[6] https://www.math.uni-bonn.de/people/blomer/
[7] https://adw-goe.de/mitglieder/personendetails/person/joerg-bruedern/
[8] https://pub.ista.ac.at/~ychan/
[9] https://ofir-gorodetsky.github.io/
[10] https://sites.google.com/view/neelam-kandhil/welcome
[11] https://sites.google.com/site/oleksiyklurman/home
[12] https://www.uu.nl/staff/PHKoymans
[13] https://people.kth.se/~kurlberg/
[14] https://florianluca.com/
[15] https://sites.google.com/view/carlopagano/home-page
[16] http://www.mat.uniroma3.it/users/pappa/
[17] https://sites.google.com/view/vanditapatel/home
[18] https://sites.math.duke.edu/~pierce/
[19] https://www.oeaw.ac.at/ricam/staff/sumaia-saad-eddin
[20] https://www.studip.uni-goettingen.de/extern.php?module=Persondetails&range_id=f01cb6ad89f913e65369bf4078cb36f3&username=schindler31&seminar_id=815a42f0120b124838bf3044e7ec24a7
[21] https://www.math.purdue.edu/people/profile/asedunov.html
[22] https://web.maths.unsw.edu.au/~igorshparlinski/
[23] https://sites.google.com/view/efsofos/home
[24] https://www.universiteitleiden.nl/en/staffmembers/peter-stevenhagen#tab-1
[25] https://sites.google.com/site/adeirmasuriajaya/
[26] http://www.lolathompson.com/
[27] https://sites.google.com/view/stevan-gajovic/
[28] https://www.mpim-bonn.mpg.de/de/node/13241
[29] mailto:asymptotic25$@$mpim-bonn$.$mpg$.$de
[30] https://www.mpim-bonn.mpg.de/node/13617
[31] http://www.mpim-bonn.mpg.de/equalopportunity