Published on *Max-Planck-Institut für Mathematik* (http://www.mpim-bonn.mpg.de)

Posted in

- Vortrag [1]

Speaker:

Zhao Lei
Zugehörigkeit:

U. Virginia/MPI
Datum:

Don, 29/07/2010 - 15:00 - 16:00 A Lie superalgebra is a generalization of Lie algebra to include a $Z_2$ grading. Definitions of, such as, a Lie superalgebra, homomorphism, and module, etc., resemble the Lie algebra case but include a suitable sign twist everywhere. The complexity of representation theory of Lie superalgebras far exceeds that of Lie algebras. For example, the finite-dimensional representations /C is not complete reducible for most complex simple Lie superalgbras. In this talk, I will be focusing on the general linear Lie superalgebra $gl(m|n)$, I will try to sketch rough pictures of the representation theory of $gl(m|n)$ both over the complex numbers and over char. $p>2$. The only prerequisite is some acquaintance of Lie algebras.

**Links:**

[1] http://www.mpim-bonn.mpg.de/de/taxonomy/term/39

[2] http://www.mpim-bonn.mpg.de/de/node/3444

[3] http://www.mpim-bonn.mpg.de/de/node/158