Let $(X,f)$ be a discrete dynamical system and let $\mathcal{F}$ be a hereditary upward set of subsets of $\mathbb{N}$. A point $x$ is $\mathcal{F}$-recurrent, if for any open neighborhood $U$ of $x$, return times of $x$ to $U$ are in $\mathcal{F}$, that is $\{n : f^n(X)\}\in \mathcal{F}$. A point $x$ is $\mathcal{F}$-PR if for any $\mathcal{F}$-recurrent point $y$ in any dynamical system $(X,g)$ the pair $(x,y)$ is recurrent for $(X\times Y, f\times g)$. In this talk we will present recent results and open problems related to the $\mathcal{F}$-PR property.
Anhang | Größe |
---|---|
![]() | 91.38 KB |
Links:
[1] http://www.mpim-bonn.mpg.de/de/taxonomy/term/39
[2] http://www.mpim-bonn.mpg.de/de/node/3444
[3] http://www.mpim-bonn.mpg.de/de/node/5079
[4] http://www.mpim-bonn.mpg.de/de/webfm_send/277/1
[5] http://www.mpim-bonn.mpg.de/de/webfm_send/277