We will review some classical problems in Differential Geometry, which lead us to work with manifolds with almost non-negative curvature. In particular, we will explain during the talk why it is natural to wonder weather for these manifolds a topological invariant called Â-genus vanishes (this question was proposed by John Lott in 1997). We will provide a positive answer by investigating sequences of spin manifolds with lower sectional curvature bound, upper diameter bound and the property that the Dirac operator is not invertible. As a key ingredient of the proof we prove a generalization (under weaker curvature assumptions) of the renowned theorem by Gromov about almost flat manifolds. This is joint work with Burkhard Wilking.
Links:
[1] https://www.mpim-bonn.mpg.de/taxonomy/term/39
[2] https://www.mpim-bonn.mpg.de/node/4234
[3] https://www.mpim-bonn.mpg.de/node/6043