Let $G=SL(2,\mathbb{R})\ltimes \mathbb{R}^2$ and $\Gamma=SL(2,\mathbb{Z})\ltimes \mathbb{Z}^2$. Building on recent work of Strombergsson we prove a rate of equidistribution for the orbits of a certain 1-dimensional unipotent flow of $\Gamma\setminus G$, which projects to a closed horocycle in the unit tangent bundle to the modular surface. We use this to answer a question of Elkies and McMullen by making effective the convergence of the gap distribution of $\sqrt n$ mod $1$.
Anhang | Größe |
---|---|
![]() | 250.71 KB |
Links:
[1] http://www.mpim-bonn.mpg.de/de/taxonomy/term/39
[2] http://www.mpim-bonn.mpg.de/de/node/3444
[3] http://www.mpim-bonn.mpg.de/de/node/5180
[4] http://www.mpim-bonn.mpg.de/de/node/5079
[5] http://www.mpim-bonn.mpg.de/de/webfm_send/285/1
[6] http://www.mpim-bonn.mpg.de/de/webfm_send/285