Let $G=\mathrm{SL}(2,\mathbb R)\ltimes \mathbb R^{2k}$ and let $\Gamma$ be a congruence subgroup of $\mathrm{SL}(2,\mathbb Z)\ltimes\mathbb Z^{2k}$. We give an effective equidistribution result for a family of 1-dimensional unipotent orbits in $\Gamma\backslash G$. The proof involves Spectral methods and bounds for exponential sums. We apply this result to obtain an effective Oppenheim type result for a class of indefinite irrational quadratic forms. This is based on a joint work with Andreas Strombergsson.
Attachment | Size |
---|---|
![]() | 194.08 KB |
Links:
[1] http://www.mpim-bonn.mpg.de/taxonomy/term/39
[2] http://www.mpim-bonn.mpg.de/node/3444
[3] http://www.mpim-bonn.mpg.de/node/5180
[4] http://www.mpim-bonn.mpg.de/node/5079
[5] http://www.mpim-bonn.mpg.de/webfm_send/284/1
[6] http://www.mpim-bonn.mpg.de/webfm_send/284