By building some suitable strictly ergodic models, we prove that for an ergodic system $(X,\mathcal{X},\mu, T)$, $d\in\mathbb{N}$, $f_1, \ldots, f_d \in L^{\infty}(\mu)$, the averages $\frac{1}{N^2}\sum_{(n,m)\in [0,N-1]^2}f_1(T^nx)f_2(T^{n+m}x)\ldots f_d(T^{n+(d-1)m}x)$ converge $\mu$ a.e. Deriving some results from the construction, for distal systems we answer positively the question if the multiple ergodic averages converge a.e. That is, we show that if $(X,\mathcal{X},\mu, T)$ is an ergodic distal system, and $f_1, \ldots, f_d \in L^{\infty}(\mu)$, then multiple ergodic averages $\frac{1}{N}\sum_{n=0}^{N-1}f_1(T^nx)\ldots f_d(T^{dn}x)$ converge $\mu$ a.e.. Joint work with Song Shao and Xiangdong Ye.
Attachment | Size |
---|---|
![]() | 231.36 KB |
Links:
[1] http://www.mpim-bonn.mpg.de/taxonomy/term/39
[2] http://www.mpim-bonn.mpg.de/node/3444
[3] http://www.mpim-bonn.mpg.de/node/5180
[4] http://www.mpim-bonn.mpg.de/node/5079
[5] http://www.mpim-bonn.mpg.de/webfm_send/263/1
[6] http://www.mpim-bonn.mpg.de/webfm_send/263