Skip to main content

Koszul duality and deformation theory

Posted in
Speaker: 
Andrey Lazarev
Zugehörigkeit: 
Lancaster/MPIM
Datum: 
Fre, 2020-03-13 09:30 - 10:30
Location: 
MPIM Lecture Hall

Koszul duality between Lie algebras and cocommutative coalgebras constructed by Hinich is the basis for formal deformation theory, at least in characteristic zero.  In this talk I explain, following Manetti, Pridham and Lurie, how Koszul duality, combined with Brown representability theorem from homotopy theory leads to representability of a formal deformation functor up to homotopy. Sometimes a formal deformation functor has a `noncommutative structure', meaning that it is defined on a suitable homotopy category of associative algebras. In this case there is a similar representability result, valid in an arbitrary characteristic. I will also discuss a generalization of this noncommutative representability theorem to the non-local case.

© MPI f. Mathematik, Bonn Impressum & Datenschutz
-A A +A