Posted in
Speaker:
Michael Brandenbursky
Zugehörigkeit:
Vanderbilt U/MPI
Datum:
Mon, 27/01/2014 - 16:30 - 17:30
Location:
MPIM Lecture Hall
Parent event:
Geometry and Topology Seminar In this talk I will survey results on the large-scale metric
properties of groups area-preserving diffeomorphisms of surfaces endowed with the hydrodynamic L
2-metric (or more generally the L^p-metric). I will prove that every finite dimensional vector space admits a quasi-isometric embedding into these groups, and in particular these groups are unbounded w.r.t. these metrics. The methots used involvequasi-morphisms on braid groups and configuration space integrals.
No previous knowledge of the subject will be assumed.
© MPI f. Mathematik, Bonn | Impressum & Datenschutz |