Thin buildings (in the sense of Tits) arise as coset geometries of Coxeter groups, most of the spherical buildings as coset geometries of groups with a BN-pair. We generalize the notion of a group to ``generalized groups" in such a way that arbitrary (not necessarily thin or spherical) buildings arise as coset geometries of ``generalized Coxeter groups". Each set of right cosets of a subgroup of a given group turns out to be a generalized group. These generalized groups are called ``schurian". We are looking for sufficient criteria for generalized groups to be schurian. Tits' Reduction Theorem for thick spherical buildings of rank at least $3$ translates into such a criterion. This observation suggest an alternate proof of Tits' theorem within generalized group theory.

Posted in

Speaker:

Paul-Hermann Zieschang
Affiliation:

U Texas/MPI
Date:

Thu, 2010-04-29 15:00 - 16:00
Location:

MPIM Lecture Hall
Parent event:

MPI-Oberseminar