Skip to main content

Abstracts for Mini-Workshop on "Geometric Group Theory in Bonn", January 31 - February 1, 2019

Alternatively have a look at the program.

Twisted Patterson-Sullivan measure and applications to growth problems

Posted in
Speaker: 
Rémi Coulon
Affiliation: 
IRMAR
Date: 
Thu, 2019-01-31 15:00 - 16:00
Location: 
MPIM Lecture Hall

Given a group G acting properly by isometries on a metric space X, the exponential growth rate of G with respect to X measures "how big" the orbits of G are. If H is a subgroup of G, its exponential growth rate is bounded above by the one of G. We are interested in the following question: when do H and G have the same exponential growth rate ?

Tea break

Posted in
Date: 
Thu, 2019-01-31 16:00 - 16:30

Sofic approximations - what’s the problem

Posted in
Speaker: 
Andreas Thom
Affiliation: 
TU Dresden
Date: 
Thu, 2019-01-31 16:30 - 17:30
Location: 
MPIM Lecture Hall

I am planning to give a general introduction to sofic groups, mention a few applications to fundamental conjectures about groups and group rings, and explain Misha Gromov’s conjecture that all groups are sofic. Finally I want to present a natural generalization of Gromov’s conjecture due to Laszlo Lovasz and Balasz Szegedy that has recently been disproved in joint work with Gabor Kun.

tba.

Posted in
Speaker: 
Elia Fioravanti
Affiliation: 
University of Oxford
Date: 
Fri, 2019-02-01 09:30 - 10:30
Location: 
MPIM Lecture Hall

Tea break

Posted in
Date: 
Fri, 2019-02-01 10:30 - 11:00

tba.

Posted in
Speaker: 
Nicolaus Heuer
Affiliation: 
University of Oxford
Date: 
Fri, 2019-02-01 11:00 - 12:00
Location: 
MPIM Lecture Hall

Property (T) for $\mathrm{Aut}(F_n)$

Posted in
Speaker: 
Dawid Kielak
Affiliation: 
Bielefeld University
Date: 
Fri, 2019-02-01 14:00 - 15:00
Location: 
MPIM Lecture Hall

I will present a recent proof, by Kaluba, Nowak, and myself, of the fact that $\mathrm{Aut}(F_n)$ has Kazhdan's property (T) for every $n>4$.  I will discuss how the same strategy gives a new proof of property (T) for $\mathrm{SL}_n(\mathbb Z)$.

Fixed point properties for group actions on Banach spaces

Posted in
Speaker: 
Tim de Laat
Affiliation: 
Universität Münster
Date: 
Fri, 2019-02-01 15:30 - 16:30
Location: 
MPIM Lecture Hall

Group actions on Banach spaces (in particular on Lp-spaces) have seen a growing interest in the last decades. After an introduction to this topic, I will explain a joint work with Mikael de la Salle, in which we established a spectral criterion for fixed point properties of group actions on large classes of Banach spaces (including Lp-spaces). This criterion can be applied to random groups in certain models. Our work also lead to new estimates on the conformal
dimension of the boundary of random groups.

 

© MPI f. Mathematik, Bonn Impressum & Datenschutz
-A A +A