Skip to main content

Free Resolutions and Vector Bundles on $P^n$

Posted in
Speaker: 
David Eisenbud
Affiliation: 
Berkeley
Date: 
Fri, 2011-02-25 15:30 - 16:30
Location: 
MPIM Lecture Hall
Parent event: 
Extra talk

Free resolutions give an interesting invariant of a variety embedded in projective space called the ``Betti table''; for example, Green's conjecture relates a basic property of a curve -- essentially the minimal degree of a map from the curve to $P^1$ -- to the Betti table of the curve's canonical model. However, it seems in general extremely difficult to say what values this invariant can take on.

A remarkable conjecture of Boij and Soederberg, now proven (and much generalized), gives remarkable insight into the possibilities, and has led to a new way of thinking about free resolutions. The proof of the conjecture involved relating free resolutions to vector bundles on projective space in a novel way that also yields strong information about the possible cohomology tables of such vector bundles.

I'll describe this connection, which is joint work of mine with Frank-Olaf Schreyer, and some of the related results in this rapidly developing area.
 

© MPI f. Mathematik, Bonn Impressum & Datenschutz
-A A +A