Alternatively have a look at the program.

## SageMath history and overview

The SageMath history is recent in the world of computer algebra and was initiated by W. Stein around 2005 with the goal of computing modular forms for congruence subgroups of SL(2,Z). Since then, many people joined the project and gave birth to a fairly general software for mathematical computations. The aim of this talk is to discuss the history, the goals and the structure of SageMath and briefly demonstrate its possibilities.

## Interactive SageMath tutorials (bring your laptop!)

This tutorial session is aimed to get you started with computations in SageMath. We will distribute various

worksheets (from number theory to differential geometry through graph theory) with the hope that you will develop computational skills useful for your own research.

To attend the session, it is mandatory to have a laptop (or at least to have a neighbor in the audience with a

laptop). It is preferable, but not mandatory, to have SageMath installed on it. For that purpose, follow the

## Computation of modular cohomology rings of finite groups

The p_group_cohomology package for SageMath is able to compute the mod-2 cohomology rings of all groups of order 128

and the mod-p cohomology of the Third Conway group and some other sporadic groups. We will explain the underlying

algorithm (non-commutative F5 algorithm for modules over path algebras) and demonstrate its usage.

This program led to the classification of the cohomology rings of all p-groups of order up to 81 (order 64

being the most interesting) in terms of graded ring isomorphisms.

## Informal discussions, install party, etc

© MPI f. Mathematik, Bonn | Impressum & Datenschutz |